%everbridge‘@

Control Center Integration Software Development Kit
(ISDK) Guide

|
Everbridge Suite

%everbridge‘@

Contents

Control Center Integrations Software Development Kit (IDSK)oereerreeereerrecereerrecssecesnnns 5
Product Naming Changes 5
Setting Up Control Center ISDK Environment 6
Setting up Resharper and StyleCop in Visual StUAIO ... sssessessenens 6
INStalling CoNtrol CeNTEI ISDK ... ssesessssssssssssssssssssasssssassassassassassassassassassans 6
Installing Connectors in Control Center 10
Control Center Connector Architecture 11
Control Center Connector Structure .12
State Propagation Logic 14
Video CoONNECLON AFCHITECIUIE ..ttt ssssss st sssessessessessessessessessessessens 16
Interactions With MicroSoft ECO-SYSTEM ...t ssssassesans 18
USIiNg NVR CONNECLOr TEMPIALE ..ottt sttt sessessessessessessessessessessessessessessens 18
NVR Template ConnNector TEMMINOIOZYoeveeeereeieeresresresressessessessessssessssessssssssessssessssessssens 19
NVR Connector TemMpPlate FEATUIe LiSt. . ccceceeceeessesesssssssssssssessssesaenns 19
CCTV DEVICE SEALES ...ttt sttt sessenes 19
Connecting NVR Connector TemMpPlate to SEIVEN ...ttt sessessessessenes 20
Using Alarms with NVR Connector TEMPIAtE. ...ttt s sessessessensens 20
SEALE MACKHINE (FSM) e eeseeeeeseeereeessessesssssssssssssssssssssssssssassses 22
IMPIEMENTING LIVE VIAEO .ttt sttt sessessssessessessessessessessessessessessessessesens 23
USINEG PlAYDACKcucveetcerrreetesetessestsssssss s sssessssssssessessessessessessassessessessessessessessessessessessessessessessessessessens 23
SPECIAI CASES ettt ssse s as s s be s e b bR bbb R b bR bbb e s s bas b s s sasasasen 27
LI ATIONS ..ttt ses b s s sessesbessessessessessesbessessesbesbessessessesbessessessessassessassessassans 27
Using Access Control ConNECtOr TEMPIALE ...ttt sessessessessessssessessessessens 28
Access Control Template Connector TErMINOIOZYceeeeveereeresresressessessessessssessessessessessessens 28
ACCESS CONLIOI DEVICE STALES.....oeeeeetsesssss s sssessessessessessessessessessessssessessessessens 29
EVENTES ettt e bbb ARt ARt a st aeas 31
Access Control System Connector FUNCLIONAIItY ... aesaenns 32
Using Fire Panel ConnNeCtor TEMPIALE ..ttt sttt sssessessessessessessessessessens 48
Fire Panel Template ConNECtOr StrUCTUNE. ... ssssssssssesaenns 49
CONEFACES. ..ttt s ss s s st bbb a st st as bbb e s s st essesasaessesassessnans 49
EVENTES ettt ae s s s s e e s e R bbb a et aeas 50
INEEITACES .ttt b s bbb bbb bbb bbb bbb bbb bbb bbb bes 51
INCOMINE DAta MOUEL ..ttt be s bbb bbb bbb sessessessessessesens 51
CONNECEON PrOJECE STIUCTUIE ..ttt ss s sessessessessessessessessessessessessessesses 52
CONNECLON NAME.....ceeetecteeeecteeeee e sss s sesssses s s ssesssaes s ssbessesssses b essessssessesassessessssesssassesansans 52
Connector Project Files 53
USIiNg CoNNECLOr DESIZN SUIMTACE ...ttt st sessessessessessessessessessessessessessens 58
Connections 59
Shapes aNd SHAPE PrOPEITIES ..ttt sssssessessessessessessessessessessessessessesses 59
Built-in INterface Shape ProPEIti€S ...ttt sessessssessssssessessessessessssessssessens 72
Custom ISDK Attributes 72
Toolbox 73
DIEVICE CONIFACT ...ttt sttt sesses b b s bessessessesbes s bessessessessesbessesbessessessessessestensens 74

%everbridge‘@

Device Contract Class FOIMAL ...t sesssssssssssssssssssssssessssessssessessessessessens 75
Drivers Public Methods 76
Populating Child Devices 77
Populating SiNGIE Child DEVICE ...ttt sessssessssesssssssssssssssessssessssssessessessessens 78
Populating MUltiple Child DEVICESeeeeeeeeeeereeiesiesiessessessesssssessesssssssssssssessssssssssssssssessessens 79
Populating Large Number of Devices .80
Populating Devices as a Background Task 80
Repopulating @ DElEteA DEVICE ...ttt sessssessssesssssssssssssssessssessssssessessessessens 83
Navigating Device Hierarchy 84
GEL CRIlA AEVICE ettt st bbb bbb s bbb bbb bbb bbb b b bensenen 84
GEL PArENt DEVICE ...ttt tes st bessesbes b ssbes s sesbes s sessesbes s sessessessessessassessessanes 84
DEVICE INEEITACES ..ottt bbb bbb bbb bbb bbb bbb bbb b besbenbesbentens 86
DEVICE CONNECLION .ttt st s ses s sessessessessessessessesbessessessessessessessessessessessessessessessessens 87
Connectivity Monitoring 88
Reflecting CUrrent DEVICE STAt@ . eeeeeeeeerestessssssssssss st sessessessssessessessessessessessessessens 89
RepOrting Child DEVICE STAtES ...ttt ssssssss s sssssessssessessessessessssessessessessessens 90
Custom States......ccoeverveeererrennnne 91
DIEVICE PIrOPEITIES .ttt ssssssssasses s s s ssssesassassessssassessssassesassassessssassesassessosans 93
Supported Property Types 93
Default Property Values 93
Add a New Property.....eeeenrnnee .. 93
Make a Property Read Only 94
Saving and PersiSting @ PrOPEILY ..ttt ssssssssss st sssessessessessessessessessesses 94
Validating Property Values 95
Detecting Property Valug ChangES ... eeeesiessessessessessessssessssssssssssessessessssessessessessens 96
DEVICE PUDIIC MELNOMAS ...ttt st s sessessessessessessessessessessessessessessassessessessens 97
Device Method Name LimMItations......iieesessessssssssssssssssssssssssssessessssessessessessens 97
Device Methods Parameter TYPES .. e ssesssessses 97
DeVvice Method RELUIN TYPES ..ttt ssssssssssssssssssssssssssssssassssssasssssses 98
Hide a Method From @ Property Grid ... ceccecceesscissesssssessesssessssssssssssssssssessenns 98
Provide @ LISt Of [EEIMS ..ttt st sssessessessessessessessessessessessessessessessessassens 98
O PEIALON ACTIONS ..ttt se s st ss st s sas b s sas s b as s b s s bas b sassesaesassasasass 99
CONNECLON EVENT PrOPEITIES. ..ttt sssssses s ssssssssassesassassessssassessssassesaen 99
RaiSING CONNECLON EVENTSoeeeeeeerrererseesssssssss s sssssssssssssssasssssasssssassassassassassassassassassassassans 100
Reporting GeographiC LOCAtION ... seeeesseessssssssssesasssssasssssasssssassassassassassassassans 100
EXPOSING ENUMS ...ttt s ssssss s sssssssssasssssssssssasssssasssssasssssassassassassassassassassassassassassases 101
Developing Video Connectors 101
Populating BUttons and CONEIOIS ... cceeceeiesesesesee s sesssssssssssessassassassassassassens 102
VIAEO T8 CONLIOL et sesses s asssssassassassassassassassassassassassassassassassassassans 106
Basic Features of a CCTV Connector 107
SDK SESSION IMPIEMENTALION ..ottt sasssssssssssassassessassassassassassassasses 108
CONNECEON PAttEINS ..ottt ses s sesasssses s sessessssessessssessesessessesassssssessssssessessssessnes 108
Safe Timer 108
Assembly Redirection 109

Generic Pool 110

%everbridge‘@

GENEIIC POIIEE st ass s asssss s sss s sassassasssssass s s e s s sassassassassassansas 110
PlAYDACK FSM .t sessssssesas s s sassssasssssessssasssssssessessssessessssessssassenes 111
Connection Monitors 111
Network Socket Wrappers 111
FIOat COMPATISON ...ttt se s sas s s ssssessssassessssesassassessssssesssassessssassenes 111
SPIE CAMEI CASE et sas s s s b s e s s sassessesassesassesaene 112
DEVICE POPUIALION ..ottt sss s s sassessssssasssssessesassessesassessesassenes 112
Device Patters EXamMPIE COE.. s sesesessessssessesssessssssssssessessssessessssessesssseses 113
CONNECEON TESEING .ot ss s assassasssssassassasssssasssssassassassassassassassassassassassassassassas 115
CoNNECtOr TESEING Prer@QUISITES ... sssesssassssssssssasssssassassassassassassassasses 115
ConNections aNd ONIINE STALES ... sssassassassassassassassassassasees 116
DEVICE POPUIALION oottt sss s sss s s ssssessssssasssssessssssesssassessesassenes 119
DIEVICE PrOPEITIES. ...ttt se s s bes s s s s s s b s s s s ses s sasses s sassessssassanes 121
DEVICE MELNOAS ...t ssssssssssssasssssans 121
DIBVICE EVENES ...ttt s sasssssassssssssans 122
Device Custom States......cceeeeererrennnne. 124
Live Videoeeeerrerreernen. 125
Test SDK Sessions/Connections Release 132
Memory Leaks Detection 133
Uninstall Connectors......eeeeerrennnes 133
All Connectors - Expected Functionality 134
Video Connectors - Expected Functionality 135
Example FSM Implementation 145
Control Center ISDK ComPatiDility ...t sessessssessessssesssssssessesessens 153
[SDK VEISIONS ..ottt tessesaessessesses s sessessssssssssssssssssssssasssssassassassassassassassassasssssasssssassassassassassassassans 155
[SDK EVEN INEEITACES c..eeeeeeeerceeeeceteeeeeseeessasssssssssssssssasssssssssssasssssasssssassassassassassassassassassassassassassassassans 179
Implementing an Event Interface in ConNector DESINEN.......eeeereereeneeeeressrssssnsens 179
UBTTTEY LIDIATTES et s s s ss s s s s e b s sas b s s sassesassas s sassesasassasaes 186
DI VBT ottt s sss s s s sassassassassassasbassassassassass s sassassassassassassassassassassassassassassassans 186
D IVEE. EQILOrS sttt s ssssssessss s s sassans 187
UL Y. LOZEINEG e veereereerrrrseersrsssssssssssssss s s sassassssssssans 187
UBTTTEYINET oottt bbb bbb bbb e b s a s bbb e bbb as b s s sassenas 187
Ui ITEY . INEE.SOCKEES ..t sass s s s s s s s s s b s sassenes 188
Utility.OperatioNSCREAUIET ...t sss s s st s s s sesassassenes 191
U Y. TREEATING ettt s sssss s ssssans 192
LOZEING ULIILY .ooueeeeeeeeeeeeetesteseseees ettt ses s ses s ssssssssssassssssssssasssssssssssasssssasssssassassassassassassassassassassanes 193
LoglLevel 194
LOEMANAGEISTOI ...ttt ses s ss s ses s ses s sesses s sessessesessesasbessessssessesassesasasseses 194
DriverLogManager . 194
DriverLog 195
Example 195

%everbridge‘@

Control Center Integrations Software
Development Kit (IDSK)

Control Center is a PSIM software-based integration and management platform. It
connects and manages disparate building and security technologies such as video
surveillance, life critical systems, radar, analytics, HVAC, PIDS, GPS tracking and GIS
mapping.

The Control Center Integration Software Development Kit (ISDK) is a set of programs and
related files that enable you to develop new connectors that let Control Center
communicate with specific security devices in your security solution.

The Control Center connector allows you to implement API and protocol functions
implemented by a specific security device, providing you with the ability to control and
monitor that device in Control Center. This allows you coordinated control and
monitoring of disparate devices through Control Center, improving performance of your
security solution.

Product Naming Changes

The following table describes product name changes.

Previous Name New Name

From version 5.25 onwards, IPSecurityCenter was renamed

IPSecurityCenter Control Center.

From version 5.30 onwards, Driver Development Kit was renamed
DDK .)

Integrations Software Development Kit.
Driver From version 5.30 onwards, drivers were renamed connectors.

Addon From version 5.30 onwards, addons were renamed extensions.

%everbridge‘@

Setting Up Control Center ISDK
Environment

The following software must be installed on the machine where you are developing your
driver and where you are going to install Control Center ISDK.

|CAUTION: Uninstall any old versions before installing new versions.

e Visual Studio. Make sure the following is installed as part of Visual Studio:
o VS2019 Entity Framework Powertools
o VS$2019DSL

o Reshaper (latest version)
e StyleCop for Resharper

Setting up Resharper and StyleCop in Visual Studio

To do this:

1. From Visual Studio, select Resharper > Manager Options.
2. Add layers for:

o CNL.Resharper

o CNL.StyleCop

3. Uncheck the StyleCop.StyleCop extension.

4. Setup the Visual Studio Reshaper context menus by selecting, Resharper >
Options > Keyboards & Menus and deselect Hide overridden Visual
Studio option.

Installing Control Center ISDK

To install Control Center ISDK :

1. Make sure your system meets the requirements, see Setting Up Control Center
DDK Environment.

2. Close all instances of Visual Studio.

3. Browse to the location of your Control Center ISDK installation package

4. Double-click Everbridge.ControlCenter.ISDK.Install.msi. The Control Center
Integrations SDK Setup Wizard displays.

é&everbridge“”

5. From Welcome, select Next.
ﬁ Control Center Integrations SDK Setup — X

Welcome to the Control Center
Integrations SDK Setup Wizard

The Setup Wizard will install Control Center Integrations SDK
on your computer., Click Mext to continue or Cancel to exit
the Setup Wizard.

EVERBRIDGE
CONTROL
CENTER

6. From End-User License Agreement, select | accept the terms in the License
Agreement.

ﬁ Control Center Integrations SDK Setup — >

End-User License Agreement

Please read the following license agreement carefully

Control Center Integrations SDE ~
END-USER LICENSE AGREEMENT

IMPORTANT-READ CAREFULLY: This End-User License Agreement ("EULA") is &
legal agreement between you (either an individual or an entity) and CHNL
Software Ltd. an Everbridge Software Company ("CHL") for the CHNL software
product identified above, which includes computer software and may
include associated media, printed materials, andfor electronic
documentation ("Product”). This EULA is valid and grants you license rights
OMLY if the Product is genuine and, if applicable, a genuine License
Certificate for the Product is included as part of the Product. Any software v

[]1 accept the terms in the License Agreement

Print Back et Cancel

7. Select Next.

%everbridge“”

8. From Product Features, select the way you want features to be installed.
ﬁ Control Center Integrations SDK Setup — X

Product Features
Select the way you want features to be installed.

: Integrations SDK
b 3 | Wigual Studio 2019 Extensgion

Libraries that are required to integrate with Control Center,

This feature requires 6384EB on your hard drive.

NOTE: The wizard prompts you to close Visual Studio, if you have Visual Studio
open, as you cannot proceed with the installation if Visual Studio is open.

9. Select Next.

é&everbridge“”

10.From Destination Folder, you can either accept the default installation folder or
select Change and browse to a new location.
ﬁ Control Center Integrations SDK Setup — X

Destination Folder
Click Mext to install to the default folder or dick Change to choose another.

Install Control Center Integrations SOK to:

|C: YProgram Files (x86)\Everbridge\Control Center\TSDKY,

Change...

11.Select Next.
12.From Ready to install Control Center Integrations SDK, select Install.

Aeverbridge‘@

13.0nce Control Center Integrations SDK is installed, select Finish to close the
Control Center Integrations SDK Setup Wizard.

]ﬂ Control Center Integrations SDK Setup == >

Completed the Control Center
Integrations SDK Setup Wizard

Click the Finish button to exit the Setup Wizard.

. EVERBRIDGE
@ CONTROL
w CENTER

m

Installing Connectors in Control Center

An overview of the process for installing device drivers into a Control Center solution, is
described below.

1. Thedevicedriver is installed using the Device Driver Manager option within the
System Configuration window. The driver package is then sent to the Server
service.

2. The Server service receives and loads the newly installed device driver and then
informs the Notification service of the update.

3. The Notification service then notifies the Connection Manager that a new device
driver is available for download.

4. Once the Connection Manager has downloaded the new device driver, it instructs
the Notification service that the new driver has been loaded and read for use.

5. The Notification service then notifies all clients in the solution that a new driver
has been loaded.

6. Any clients without a copy of the new device driver download the new driver from
the Server service.

%everbridge@)

Control Center Connector Architecture

Connectors integrate with various 3rd party systems (aka subsystems).

Each connector is released as a driver package (a file with .ipscdriver extension). Driver
package contains:

Driver DLL

ISDK libraries

3rd party SDK files
log4Net DLL to log messages

All the driver packages are loaded by Connection Manager services. Everbridge
recommends that you have multiple Connection Manger services, with one Connection
Manager service per driver.
After driver package is installed, it is copied into two folders on a PC hosting Connection
Manager service:

e C:\ProgramData\Everbridge\ControlCenter\Connection

Manager\Default\Packages -driver package copies
e C:\ProgramData\Everbridge\ControlCenter\Connection

Manager\Default\Extracted -extracted (unzipped)driver packages

Connection Manager - driver hosting

Connection Manager Connection Manager Typical Connection Manager
hosting one driver hosting multiple drivers setup on site

API/SDK iAP;’SDK API/SDK

1 2 3

) Driver Driver
Driver 1 1 3

API/SDK API/SDK

e o
1 p

%everbridge‘@

Control Center Connector Structure

All devices consist of the following:

NOTE: The states, properties, events and methods that a device has depends on the type

of device.
Concept Description
Types The type of device.
States The state of the device. For example, camera states may include
Online, Offline, Failed, Warning, Connecting and so on.
Properties The properties you may need to use on a device.
Events The events you can action on a device from your driver.
Methods The commands a driver can send to a subsystem device.

Each Control Center connector defines one or more Control Center device types.

Device Drivers | Add-ons

Device Driver Packages
MName Version Additional Information
A I_D Installed Device Driver Packages
[I_D CML.IPSecurityCenter, Driver . Bosch.BYMS 1.0.6970.24721
A I_D CNL.IPSecurityCenter. Driver, Geutebruck, GCore 1.0.6971.40136
|‘ Geutebruck GCore Server
I-.r{_'l Geutebruck GCore Camera
N Geutebruck GCore Digital Input
/" Geutebruck GCore Digital Qutput
[I_D CNL.IPSecurityCenter.Driver.Geutebruck. GeViScope 1,0.6974. 16841
A I_D CNL.IPSecurityCenter.Driver.Lenel. OnGuard 1.0.6975.21038
) OnGuard Server
[i=] OnGuard Reader
T‘I7f OnGuard Alarm Panel
@ OnGuard Area
O OnGuard Alarm Qutput
@ OnGuard Alarm Input
T‘I7f OnGuard Panel
[. OnGuard Intrusion Door
@ OnGuard Intrusion Zone
@ OnGuard Intrusion Area
O OnGuard Intrusion Output

7 Onavard Camera
Notes:

e Eachdevice type describes a 3rd party entity:
o physical device
o service
o server
o physical/logical 3rd party entity (input, output, LED and so on)

o Each Control Center device has properties, methods (actions), and events.
See About Devices for more information.

e Control Center devices can be connectable. This means a Control Center device
can create a connection to a 3rd party server or an individual device.

%everbridge‘@

Connectable Devices

Connectable devices have properties that store the 3rd party device connection details.
For example, IP address, port number, username, password and so on. Everbridge
recommends that drivers have only one connectable device connecting to the main 3rd
party server. A connectable device connects and authenticates via the 3rd party server
when a Control Center user enables the device. See About Installing Drivers for more
information about enabling devices.

Once connected, the device goes to Online state . If the device fails to

connect or loses connection, the devices goes to Failed state.
device type state description
[ﬂ iGCore Test Geutebruck GCore Server The device address (IP or host) cannot be reached.
™ device state icon

To disconnect, a Control Center user must disable the server device. The driver logs out
from the 3rd party server and disconnects, and the server device goes to Disabled

State B S .

Non-Connectable Devices

Other non-connectable devices are usually created automatically by the main server
device, once the driver connects to the subsystem. Within Control Center, a server device
is called a parent device and the automatically created devices are called child

devices. Non-connectable devices do not have connection properties.

When a child device is enabled, it does not connect to a subsystem directly but uses the
existing connection session created by the parent device.

The driver checks the child device's current status in the subsystem and does the
following:

o Ifthedeviceis available in the subsystem and the device is healthy (in other words,
in a working state, connected, with no faults), it should be in an Online

state 'fj 51 East side

o Ifthedeviceisunavailable (in other words, it is disabled in the subsystem or
removed from the subsystem configuration), it should be in a Failed state, with a
description that describes the reason for the failure. For example, Device not
found.

T!T-“EEGEWSEDFIE Channel Simulator 9 Geutebrudk GeViScope Camera Device not found.

« Ifthedeviceisavailable but it is faulty, it should be in a Failed state with a state

description describing the reason for the fault.
'if: IF Camera 5FTZ Geutebruck GeViscope Camera Camera disconnected.

« Ifthe deviceis available and it supports custom states (see Custom States), it
should go to the correct custom state matching the actual device state in the
subsystem.

é&everbridge“p

State Propagation Logic

Itis important to understand how device states propagate between parent and child
devices.

When a connectable device (typically a server device) changes its state, its child devices
go to the same state (including the state icon and the state description).

Standard Control Center Device States
In Control Center, the current state of the device is displayed.

device state icon

The following table describes Control Center device states and their meaning.

State Icon When this state occurs Meaning

e Connectable devices -
device is disconnected from
subsystem and will not raise
any events and no methods
can be triggered on the

Disabled @ Device is disabled by a user . ﬁli)vlﬁlff(;nnectable devices
(child devices) - device
behavior isignored by
Control Center. It will not
raise any events and no
methods can be triggered.

Connection Manager is offline.

Note: do not use this state
represent offline devices.

. Connection Manager service
Offline
stopped or crashed

%everbridge‘@

Connectable devices:

Online

Failed

S

o

Device was previously
disabled and is now enabled
and connected

Device was disconnected
and has automatically
reconnected.

Non-connectable devices:

o

Device was prviously
disabled and is enabled and
parent device is connected.
Device is enabled. There
was a fault on the
corresponding subsystem
device and the fault was
removed. For example,
camera was reconnected.

Connectable devices. Driver
cannot connect to subsystem
or lost connection with the
subsystem

Non-connectable devices:

@)

Thereis afault on the
device

This device is not found on
the subsystem

Parent device has lost
connection to the
subsystem

Connectable devices - the
driver has successfully
connected and
authenticated with the
remote subsystem server
using the connection details
on the device.
Non-connectable devices -
the devices is healthy (no
faults) and it is configured in
the subsystem.

Connectable devices -

driver cannot connect to

subsystem server or lost

connection with the server:

there can be number of

issues:

o SDKisnotinstalled

o invalid connection
details

o faulty remove server

Non-connectable (child
devices)-

o Thereisafaultonthe
device (e.g. cameraiis
disconnected)

o Thisdeviceis not found
on the subsystem
(subsystem
configuration changed
so this device was
removed or disabled)
= Parent device has

lost connection to
the subsystem

%everbridge‘@

N Non-connectable child devices -
Warning /1% | enable the device while the
parent device is disabled

Connectin g Connectable devices - enable a
8 previoulsy disabled server device

There are exceptions to this rule.
e Disabled devices remain in Disabled state.

Do not confuse Warning state
with Failed state. Warning
state should not be raised by
the driver itself, but by
Connection Manager in
standard scenarios like, for
example, parent device is
disabled.

Device is currently attempting
to connect to remote
subsystem server

« ifachild deviceis also a connectable device, it does not set its states according to
the parent device. In other words, the state will not propagate from a connectable

parent device to a connectable child device.

o Ifadriver has a multi-level parent-child hierarchy (for example, Server — Recorder
— Camera), the states do not propagate automatically from the parent to a 'leaf"
(the device on the lowest level). It only propagates one level down, to an immediate

child device.

« You have applied the property DeviceOverridesChildOnlineState to the child
device when, as the name implies, state propagation is suspended and you need to

manage the state of the child devices.

The following table describes the default state propagation rules.

INOTE: Sometimes a connector can override some of these.

Warning (the device's parent has been

Server Device State Resulting Child Device State
Disabled disabled)

Online Online

Connecting No Change

Failed Failed

Custom No Change

Video Connector Architecture

Video connectors are different to non-video drivers. A connector that can display video
has its package loaded both into a Control Center server and a Control Center client.

%everbridge@)

On a Control Center server side, the connector package is used by 2 services:

e Avideodriver is hosted by a Connection Manager service, like all the non-video

connectors. This connector instance is responsible for:

o Monitor connectivity and state of all subsystem devices
Receive events and alarms from the subsystem
Optionally manage the native alarms: acknowledge or close them
Reflect on configuration changes if the subsystem can report it
Get camera snapshot by time stamp from a visual response plan (VRP). See
Control Center Reference Guide for more information.)
o Selecta PTZ camera preset (from a VRP)

e Avideo connector is also hosted by a Video Export service. This connector instance
is handling video export functionality, export a recorded video from a given camera
to afile.

Control Center client runs a separate Windows process called Video Control Manager (or
VCM). The connector is hosted by a VCM on a Control Center client. This connector
instance is responsible for:

O O O O

o Displaying live video feeds

o Displaying playback feeds

e PTZ and Preset functionality for PTZ cameras

e Savingvideo snapshots

o Optional extra features (depending on the subsystems available capabilities):

Change video resolution

O
o De-warp cameraimage
o Audioin/out
o Digital zoom
VCM configurations can vary and can be set for each Control Center client machine.
Default configuration — Multi-VCM configuration - typical Multiple VCM configuration —
VCM Per Driver deployment for large scale sites matrix driver

Video Matrix Video
Driver 1 Driver Driver 2

Driver Live Video PTZ/Presets. Playback
1 1

API/SDK

Driver
1

API/SDK

CCTV
Subsystem 1
Subsystem 1 Live camera

feeds

CCTV
Subsystem Subsystem
1 2

Matrix Subsystem 2
Recorders

é&everbridge“g

Interactions with Microsoft Eco-system

The core infrastructure of Control Center Connection Manager uses the following
Microsoft technologies:

.Net 4.5

.Net4.7.2

Windows Communications Foundation (WCF)
Microsoft Messaging Queue (MSMQ)
Microsoft SQL Server

C# programming Language

You can use other technologies and versions of .Net that are compatible with this
infrastructure, but the documentation supplied with the connector (in other words, RDIN)
must document the required technologies and that you must install them on every system
that the connector is installed on.

Using NVR Connector Template

The NVR Connector template defines standard functionality for a Control Center CCTV
subsystem. The NVR connector template makes it faster and easier for you to develop and
test your CCTV connectors.

To use the template, create a new project in Visual Studio and select NVR Template as
your project type.

Following is the NVR Connector Template designer diagram.

=) i &= =
| -..-. l e | e .AMJ —n
= = =1 E | =S

%everbridge‘@

NVR Template Connector Terminology

The NVR connector template has the following terminology.

NVR Connector L.
CCTV Term Description
Template Term

Recording device manager recordings of one or

NVR/DVR Recording Server .
more video cameras.
Device/asset Deactivated Devices/assets disabled in the Recorder are shown
Disabled in Deactivated custom state in Control Center.
Device/Asset Asset A physical or logical entity in CCTV subsystem.
Alarm that can occur on a video camera or an
Alarm Alarm

input. (This is not a Control Center alarm).

Device malfunction that can occur on any CCTV

Fault/Failure Fault . .
asset including recorders.

Tamper Tamper Camera was tampered with.

NVR Connector Template Feature List

The NVR Connector Template provides the following features.

Live Video

PTZ

Playback: Seek: Playback Loop

Events: Fault, Alarm, Tamper, Video Analytic events

CCTV Device States

The following table describes how the common CCTV device states and how they are
displayed in Control Center.

Scenario State Description Main GUI S e L

GUI
o™ onine | (Enon)
Camera Offline Failed Offline i Camera 4 Offine
Device with Fault | Failed Fault 5 Input 1 Fault
aivggslg)p‘larm Alarm Alarm a Input 1 Alarm
Devicein Alarm Failed Alarm, Fault g Input 1 Alarm, Fault

and Fault

é&everbridge“g

Connecting NVR Connector Template to Server

The following diagram describes how, using the NVR Connector Template, the connector
establishes connection directly to video recorders (DVRs/NVRs).

NOTE: The diagram assumes only one connection is made to the same recording server
(NVR) from every Control Center Connection Manager service. If you create multiple
instances representing the same recording server, the connection session is share across
the multiple instances. Secondly, if mulitple cameras are displayed from the same
recording server, the connection to the server is shared across the VCM process where
the connector is hosted on Control Center client.

Control Center Client

API/SDK

NVR 1

Control Center Server

Control Ci_:nter NVR 2
Connection
Manager Service

Connector

Control Center
Connection Video
Export Service

Using Alarms with NVR Connector Template.

Cameras and Inputs can receive Alarm events. The NVR Connector Template assumes
that:

e Everycamera/input can receive multiple alarms,
e Everyalarm has a unique ID that is passed in the Alarm ID property in a Alarm
event. (This can be set as an Alarm ID text box in a CCTV Simulator).
e Acameraorinput has aboolean alarm state:
o True-assetinalarm,
o False-assetisnotinalarm.

%everbridge‘@

e Devicesin Control Center must always reflect the current asset alarm state. In
other words, the Control Center device must have an alarm custom state.
See CCTV Device States.

Use Case Scenarios
The following table describes some common use case scenarios.

NOTE: This table assumes the asset in question is online, enabled and no faults are

reported.
Scenario Expected Behavior Events Raised
* Connec’For receives Alarm 1. Alarm event with property
New alarm on asset, event with AlarmStatus = .
asset is in Alarm state Start. Statusis Start
e Device goes to Alarm state. 2. State Change event
o Connector receives Alarm
Alarm ends on an event with AlarmStatus = 1. Alarm event with property
asset. In other words, Stop and the Alarm state .
h ti ti flag on the asset reports as Statusis End
the assetisnotinan 2. State Change event
Alarm state any more. False

o device goes to Online state

Another alarmon asset |
that is already in Alarm

Connector receives Alarm
event with AlarmStatus =

state. For example, it Start Alarm event with property
could be arepeated o device state remains Status is Start

alarm or a different unchanged

alarm.

Connector receives Alarm

(unlikely to happen) event with AlarmStatus =

Alarm ends while the End Alarm event with property
assetisalreadynotin ', jeyice state remains Statusis End
Alarm state

unchanged

%everbridge@)

State Machine (FSM)

A Video Control Machine (VCM) tile has its own state machine and API that has to be
synchronized with the Software Development Kit (SDK) video player. The SDK video
player has its own state logic. FSM helps to synchronize these two.

2 * This only shows basic
Video Control State Machine state transitions

Disconnected Shoir

Live Video

Initialized
Connected

Initialize native
video control
if neaded

Show
Playback

Disconnected

No recordings found

Recordings
found

Stop Video

The FSM implementation is located in videoControl \FSM.

4 VideoControl
P FSM
P + ¢* ControlState.cs
P + c= StateTransition.cs
P + ¢* VideoControlCommand.cs
P + ¢= VideoControlFsm.cs

FSM in Camera Video Control Class Use Cases

Below are two examples of typical use cases of the FSM in Camera Video Control
class.

1. Switch the FSM state after satisfying the following condition.

if (! videoControl.PlayLiveVideo (out var error))

{

throw new FatalDriverException (error);

}

%everbridge‘@

//assume successfully streaming live video, can switch FSM to live
Video state
_fsm.ProcessCommand (VideoControlCommand.ShowLiveVideo) ;

2. Make sure certain section of code is valid for the current FSM state.

if (! fsm.IsValidCommand (VideoControlCommand.ShowPlayback))
{

return;

}

Implementing Live Video

The video control implements a Switch Camera interface to optimize displaying
a sequence of cameras on the same video tile.

The NVR connector implementsa LifeTime Manager patternto cache connectionsto
recorders.

Using Playback
When using playback, the NVR Connector Template assumes:

o thesubsystem can search for existing recordings and return a list of playback
chunks (which allows the connector to display them on the Time bar).

o therecordings are managed by the recorder, and not by cameras, so it is possible to
show playback videos even from cameras which are currently offline.

o alltherecording queries are designed passing the parameters and returning results
using UTC time, so the connector does not need to convert to/from Local Time of
the recorder. The conversions between the connector UTC time and Control
Center Client local time is done by Control Center outside of the connector.

The connector manages the playback results cache to optimize the recordings search,
similar to connectors like March Networks and HuperLab HuperVision.

The NVR Connector Template's Seek algorithm logic is that if there are no recording
chunks within 3 hours (hard-coded) from the seek time (time selected on the Time
Bar/Calendar Control or the 'Now' time when switching from Live Video), the video
control displays a No recordings found message. A Security Operator cannot manipulate
playback (play or pause) when a seek operation has failed. The Security Operator has to
try to seek again until a recording is found.

Understanding Playback Speeds

In Playback mode, implemented speeds are: -4,-2, 1, 2, 4 where 1 is a normal default
speed. In Paused mode, the implemented speeds are: -0.5,-0.2,-0.1,0,0.1,0.2,0.5.

NOTE: The speeds implemented in Video Control Simulator are not precise. In other
words, the speed x4 does not necessarily plays 4 times faster and so on.

Playback is automatically restored to default x1 speed after being paused.

%everbridge‘@

About CameraVideoControl.cs

CameraVideoControl.cs manages StorageTimer to automatically populate the last
time bar chunk to simulate continuous recording. This feature demonstrates a common
workaround when a third party SDK cannot supply the exact list of recordings.

The seek algorithm implemented in the CameravideoControl class does not include
seek results validation. This is in case some SDKs return results irrelevant to the
requested seek time, as this should be done in the SDK session wrapper implementation.

Playback Scenarios
The following table describes some common playback scenarios.

Scenario Comment Expected Behavior

The server device state may be
restored later than the

Display a camera after connection (depending on the

connectionto parentvideo | Retry Interval settingin the Display video (live or play back) is the
server was lost and then recorder device), so it is possible | camerais online.

restored. to successfully display video while

the parent server and the camera
still appear in Failed State.

Due to ISDK limitation, the video
tile cannot be notified when a

Display a camera while parent server device is Disabled,
. Display video (live or play back) is the
parent video server is so the convention is to display . .
. . . . cameraisonline.
Disabled. video if the actual recorder is

online and the camerais Enabled
and online.

%everbridge‘@

Play back time when
switching to Playback mode
and recordingis in progress.

Recorder does not bring
back recordings list or
returns them after along
time.

It is not practical to try rewinding
video to present time as it takes
time to record and buffer video.
The exact timing is unpredictable
as it is dependent on arecorder
model and the network speed so
rewinding to present time usually
fails.

Rewindingto averyrecenttime, Once switched to playback mode, the
for example, few seconds camera plays from (DateTime.Now is 15
back, may succeed, but causes the ' seconds).

driver to stutter as the video

immediately plays to the end, then

tries to seek for more video, loads

only few seconds, seeks again and
soon.

To prevent this, most drivers try to

rewind to the last 15-30 seconds
instead.

The template defines a maximum
time allowed to seek, preventing
the Tile from hanging. This is
needed for SDKs that do not
implement this internally. This is
set in the Seek Timeout property
on the parent server device.

Recording Seek algorithm -
seek for a time between two
recording chunks

a. Theseektimeis closer to

C.

the previous chunk and

the chunkis longer than 5 ' The video control should try to
minutes. play back the closest available

The seek time is closer to | time to the requested seek time.
the previous chunk and

the chunk is shorter than
5 minutes.

The seek time is closer to
the next chunk.

If the SDK returns no results (or fails to
rewind) after the time defined by Seek
Timeout, a No Recordings found message
is displayed.

If the SDK supports the smart seek, in othr
words, finds the closest available time
itself, the outcome depends on the SDK.

The logic implemented in the NVR
Connector Template is as follows:

a. Play the latest 5 minutes of the previous
chunk:

Expected Seek
playback time time

m t

-~
5 min,

b. Play the previous chunk from the start:

Expected Seek
playback time time

[cruni 2 [

%everbridge‘@

Native video controls may behave
differently during the rewind
process.

If the video search and rewind
process takes a long time and the
native behavior is inconsistent, it
may be required to hide the native
control from the Security
Operator, displaying an overlay
panel displaying a Seek in
progress message.

Seek (rewind) in progress

In any case, it is preferable to show
progress in the video tile during a
long seek operation

Seek (rewind) when a
recording is not available at

the time selected. Usually the preferred behaviour is

to display some recording close to

a. Thereisarecordin
& the requested seek time.

chunk available within 3
hours of the seek time

b. Thereisnorecording
chunks available within 3
hours of the seek time

Understanding Seek Results Cache
The Seek Results cache stores:

c. Play the next chunk from the start:

Seek Expected
time Playback time

Depends on the native video control.

a. Play back the closest chunk available. If
itis later than seek time, play from the
start. If it is earlier, play the last 5
minutes of the chunk (or from the
start, if the chunk is shorter than 5
minutes).

b. Display message No Recordings Found.
To continue, Security Operator has to
try to rewind to another time.

e results for previous seek operations, in other words, list of recordings previously

found on the server.

e thetimes covered by the previous recording searches.

The Seek Results cache is needed to speed up the recording seek/rewind process. There
can be many calls to rewind the playback just by dragging a teardrop along the timebar.

The cache is cleared when a video tile is closed and when a camera is switched to another
one (for complex scenario such as: Display Live camera 1 — Switch to Playback — Switch
back to Live Video — Switch to camera 2 Live Video — Switch to Playback on camera 2).

%everbridge‘@

Special Cases

For the following cases, the NVR Connector Template behavior is as follows.

o Therecordingserver is the parent device and its name/label is defined by the user.
This means it does not get synched with the subsystem configuration (either
simulated or the real one).

e When connection to arecorder is lost and later restored, while displaying live or
playback video, the actual video may be restored before or after the states of the
cameradevices are restored. This is because the states restoration is done in
server-side in Connection Manager and its timing depends on the Retry Interval
property on the recording server device where as the restoration of the video is
done in Control Center client as soon as the SDK signals the connection has been
restored.

Limitations

The NVR Connector Template has the following limitations due to limitations with the
VCM API.

1. Ifrecordings do not exist inside the given Loop range, playback may get started on
the chunk where recordings do exist, but outside the Loop boundaries.
2. Connectors have to always:

o populate achunk ona Time bar and

o report at least one frame time while inside Seek(DateTime) VCM method.
This is needed to be able to:

1. implement Seek while the playback is paused

2. scroll the Time bar to another time later (if the Seek time is far from the
current playback time)

The side effect of thisis - the connector has to populate a fake chunk on a timebar
before the seek results are known.

%everbridge‘@

Using Access Control Connector Template

The Access Control Connector template (ACS Template) defines standard functionality
for a Control Center ACS Connector which makes it faster and easier for you to develop
and test your access control connectors.

To use the template, create a new project in Visual Studio and select ACS Template as
your project type.

Following is the Access Control Connector Template designer diagram.

Access Control Template Connector Terminology

The Access Control connector template has the following terminology.

ACS
ACS Term CEUITEEE] Description
Template

Term

Any point with restricted access where badge
Door, Turnstile, Access Point holders may want to access using authentication.
Barrier, Gate For example, passing a badge/fob, biometric

scanning, manual authentication and so on.

Panel/Door Hardware with Inputs/Outputs and connected

Controller Panel readers.
EZT(;/:adge Contact Person owning one or more credentials.

Badge, card or another means of contact

Badge/Card/Fob | Credential dentification

Access Control
System (ACS)
Server

Management Device representing the point of connection to the
Server ACS server.

Asset A physical or logical entity in ACS subsystem

Alarm Alarm Alarm that can occur on any ACS asset. When an

%everbridge‘@

alarm occurs on an input, the input is set to Alarm
custom state.

Note: This is not the same as a Control Center alarm.
No alarms are detected on the input whileitisina

Masked state. To detect the alarms the masked
input needs to be unmasked.

Input Input
Masked/Inhibited @ Masked

Momentary Unlock a door (or open a barrier, depending on
Unlock, REX Grant Access | access point) for a short amount of time (usually
button pressed pre-configured in the ACS).
Physical output (usually a two-state relay) or a
Output Output logical output. It is assumed an output can be either
on or off.

Access Control Device States

An access control connector can have the following states:

e Device States
Area States
Door States
Input States
Output states

Device States
An access control connector can have the following states for most of its device types.

Scenario State State Description
Device online Online (empty)

Device offline Failed Offline

Device deactivated ' Deactivated Deactivated

Area States

An access control connector can have the following area states.

Scenario State State Description
Area disarmed Disarmed Armed

Area armed Armed Disarmed

%everbridge‘@

Door States

An access control connector can have the following door states.

Scenario

default state (locked and
closed)

unlocked

unlocked and open

forced and closed (usually
unexpected)

Forced and Open

held and open

forced and held open

disabled in access control
system

Input States

Locked

Open Forced Held

0

0

0
0
0
0
0

1

Disabled

0

0
0
0
0
0

An access control connector can have the following input states.

Alarm
0
0
1
1

Output States

Masked
0

1
0
1

Device State

Closed

Closed
Open
Failed
Failed

Failed

Failed

Deactivated

Device State

Online
Masked
Alarm
N/A

An access control connector can have the following output states.

Scenario
Outputison
Output is off

Alarms

State
On
Off

State Description

On
Off

Access control assets can have alarms in Control Center. Alarms have a unique ID.

The lifecycle of an alarm in an access control system is as follows.

State
Description

Closed,
Locked

Closed,
Unlocked

Open

Forced,
Closed

Forced

Opentoo
long

Forced,
Open too
long

Deactivated

%everbridge‘@

Alarm created— Alarm acknowledged — Alarm cleared (Removed from the access
control sub-system)

Server Device Methods

The following server device methods are implemented in the Access Control Connector
Template.

e Acknowledge Alarm
e Clear Alarm

Events

The following events are implemented in the Access Control Connector Template.
Alarm

e Alarm-eventis raised when a new alarm is created (Alarm Status = Start) or when
an alarm is no longer triggered (Alarm Status = End).

o Alarm Acknowledged - event is raised when a previously raised alarm is
acknowledged.

e Alarmcleared - event is raised when a previously acknowledged alarm has been
cleared from the system.

Some example scenarios are described below.
Scenario Access Control Connector Template Behavior

Alarm eventisraised on corresponding device

ACS asset triggers an alarm .
&8 with Status = Start.

The ACS asset stops triggeringthe | Alarm eventisraised on corresponding device
alarm with Status = End.

Alarm Acknowledged eventisraised onthe
same device that previously raised the Alarm
event.

A Control Center operator
acknowledges the alarm

Alarm Cleared eventisraised onthe same
device that previously raised the Alarm
Acknowledged event.

A Control Center operator clears
the alarm

Fault

A Fault event means there is a fault/malfunction in the ACS asset. There can be multiple
faults for an asset.

A Control Center device with a Fault appears in a Failed state, and its state includes Fault.

If an asset is deactivated or offline, the Fault state is ignored until the asset is enabled and
back online.

%everbridge‘@

Tamper

Tamper means the ACS subsystem has detected that someone was tampering with some
hardware. There can be different types of tampers for an asset.

A Control Center device with at least one Tamper appears in Failed state, and its state

includes Tamper.

If an asset is either deactivated or offline, the Tamper state is ignored until the asset is
enabled and back online.

Access Control System Connector Functionality

Following are the properties, methods, events and interfaces for each of the elements that
make up the Access Control System connector template.

Management Server

The following tables describe the properties, methods, events and interfaces for the
management server.

Properties

The following table describes the management server properties.

Name

Keep Alive Interval

Device Population
Batch Size

Simulation Mode

Log Level

ACS Simulator
Configuration

User Name
(ISecureDevice)

Password
(ISecureDevice)

Type

int

int

bool

LoglLevel

AcsConfiguration

String

String

Description

Time interval in seconds between
web service connectivity checks.

Maximum devices allowed to
populate at a time.

When true, the connector
simulates the subsystem instead
of connecting to a real one.

Logging level of the driver.

Editable ACS simulator
configuration, only inuse in
Simulation mode.

The user name for the device.

The password for the device.

Default Value &
Ranges

Default: 10
Min: O

Max: None
Default: 50
Min: 20

Max: 100
Default: None
Min: None
Max: None

Default: None
Min: None
Max: None

Default: None
Min: None
Max: None

Default: None
Min: None
Max: None

Default: None
Min: None
Max: None

%everbridge‘@

The timeout period to use when

Default; 00:01:00

Timeout . connecting to the physical .
. TimeSpan . . . Min: None
(INetworkedDevice) device. Specify a zero period of Max: None
time (00:00:00) to never timeout. ’
The amount of time to wait
before attempting reconnection
Retrv Interval to a device after the connection Default: 00:01:00
(Ne’zlworked Device) TimeSpan has timed out or failed. Specify a Min: None
zero period of time (00:00:00) to = Max: None
attempt reconnection instantly
after a connection failure.
P Default: None
(INetworkedDevice) String The IP address for the device. Mln:-None
Max: None
Port Default: None
. Int32 The port the device listens on. Min: None
(INetworkedDevice))
Max: None

Methods

The following table describes the functional methods for management server.

Parameters
. .. Operator
NETE LIS e HETITE Action . e Default Value &
Name Type Description
Ranges
Clears an
Z)::Sa?:rgnflcaarr:nt;e Alarm Default: None
Clear Alarm . bool False Alarm Id string iee Min: None
cleared onceiit Identifier
i Max: None
acknowledged.
Acknowledges Default: None
Acknowledge @ analarm that . Alarm .
bool False Alarm Id string e Min: None
Alarm has been Identifier
. Max: None
received.
Update the
devices to synchronize)
Update match the Refresh device De.:fault. None
. bool False . bool . Min: None
Devices current Properties properties
. . Max: None
configuration and labels

on ACS server.

%everbridge‘@

Name

Simulate
Online
State
Change
Event

Simulate
Server
Online
State
Change

Simulate
Asset
Enabled
Event

The following table describes the simulate methods for management server. These
simulate methods are used for testing and are only available in simulation mode.

Description Returns

Simulates
Online State
Change API
event

Simulates

ACS server

Online State | void
Change API

event

Simulates
Asset
Enabled API
event,

void

Operator
Action

False

False

False

Parameters

Name

Asset Type

Asset Id

Panel Id

Online

Online

Asset Type

Asset Id

Panel Id

Type

AssetType

string

string

bool

bool

AssetType

string

string

Description

Asset type
the event is
simulated
for, cannot
be used for
Inputs and
Outputs

The ID of
the asset
event is
raised for.

The panel
the asset is

on, use only
for Readers

and Access
Points

The online
state to be
simulated

The online
state to be
simulated

Asset type
the event is
simulated
for

The ID of
the asset
event is

raised for

The panel
the asset is

Default Value &
Ranges

Default: None
Min: None
Max: None

Default: None
Min: None
Max: None

Default: None
Min: None
Max: None

%everbridge‘@

on: used for
Readers,
Access
Points,
Inputs and
Outputs

The enabled
Enabled bool state to be
simulated

Asset type
the event is
simulated
for

The ID of
the asset
eventis

raised for

Asset Type @ AssetType

Asset Id string

The panel
the asset is

Simulate Simulates i Eal on: used for
Vol alse Readers,

Alarm Alarm Panel Id
Access

Points,
Inputs and
Outputs

Event
description

Default: None
Min: None

string Max: None

Description | string

Alarm

Alarm Id string Identifier

Alarm

AlarmStatus @ Alarm state
Status

Asset type
the event is
simulated

for

Simulate Simulates The ID of Default: None
Fault Fault API void False the asset Min: None
Event event Asset Id string event is Max: None

raised for

Asset Type @ AssetType

The panel

Panel Id string the asset i

%everbridge‘@

Simulate
Tamper
Event

Simulate
Access
Denied
Event

Simulates
Tamper API
event

void False

Simulates
Access
Denied API
event

void False

Description

Fault Status

Asset Type

Asset Id

Panel Id

Description
Tamper
Status
Access

Point Id

Panel Id

Reason

string

AlarmStatus

AssetType

string

string

string

AlarmStatus

string

string

string

on: used for
Readers,
Access
Points,
Inputs and
Outputs

Event
description

Fault state

Asset type
the event is
simulated
for, can
select Panel,
Access
Point,
Reader,
Input

The ID of
the asset
eventis

raised for

The panel
the asset is
on: used for
Readers,
Access
Points and
Inputs

Tamper
state

The ID of
the access
point event
is raised for

The panel
the access
point

belongs to

The reason

Default: None
Min: None
Max: None

Default: None
Min: None
Max: None

%everbridge‘@

Simulate
Access
Granted
Event

Simulates
Access
Granted API
event

void

False

First Name

Last Name

Contact Id

Credential
Number

Description

Credential
Id

Access
Point Id

Panel Id

First Name

Last Name

Contact Id

Credential
Number

Description

Credential
Id

string

string

string

string

string

string

string

string

string

string

string

string

string

string

for the
access
denial

Contact
first name

Contact last
name

Contact
Identifier

Credential
used to gain
access

Event
description

The
Credential
ID

The ID of
the access
point event
is raised for

The panel
the access
point

belongs to

Contact
first name

Contact last
name

Contact
Identifier

Credential
used to gain
access

Event
description

The
Credential
ID

Default: None

Min: None
Max: None

%everbridge‘@

Simulate
Door
Forced
Event

Simulate
Door Held
Event

Simulate
Duress
Event

Simulates
Door
Forced API
event,
works only
in
Simulation
mode

Simulates
Door Held
APl event

Simulates
Duress API
event

void

void

void

False

False

False

Access
Point Id

Panel Id

Description

Alarm
Status

Access
Point Id

Panel Id

Description

Alarm
Status

Access

Point Id

Panel Id

Credential
Id

Contact Id

Credential
Number

string

string

string

AlarmStatus

string

string

string

AlarmStatus

string

string

string

string

string

The ID of
the access
point event
is raised for

The panel
the access
point

belongs to

Event
description

Alarm state

The ID of
the access
point event
is raised for

The panel
the access
point

belongs to

Event
description

Alarm state

The ID of
the access
point event
is raised for

The panel
the access
point
belongs to
The

Credential
ID

Contact
Identifier

Credential
used to gain
access

Default: None
Min: None
Max: None

Default: None
Min: None
Max: None

Default: None
Min: None
Max: None

%everbridge‘@

Simulate
Input
Masked

Simulate
Output
State
Change

Simulate
Door
Event

Simulate
Area Event

Simulates
Input
Masked

void False

Simulates
Output
State
Change

void False

Simulates
Door
common
APl event
(locked,
unlocked,
open,
closed)

void False

Simulates
Area armed
or disarmed
APl event

void False

Input Id

Panel Id

Masked

Output Id

Panel Id

State

Access

Point Id

Panel Id

State

Areald

Armed

string

string

bool

string

string

OnOff
Status

string

string

Simulated
Access
PointState

string

bool

The ID of
the Input
eventis

raised for

The panel
the Input
belongs to

Set to:
True - mask,

False -
unmask

The ID of
the Output
event is
raised for

The panel
the Input
belongs to

Output
state

The ID of
the access
point event
is raised for

The panel
the access
point

belongs to

Access point
state

The ID of
the area
event is
raised for

Area state

Default: None
Min: None
Max: None

Default: None
Min: None
Max: None

Default: None
Min: None
Max: None

Default: None
Min; None
Max: None

%everbridge‘@

Events

The following table describes the properties for the Custom State Changed
(RaiseCustomStates) event.

Name Type Description
Interface . Gets the identifier of the interface that has changed
oge Guid
Identifier state
Custom State ICustomState = The state that the device has changed to
Message String Gets the error message, if any, relating to the state
change
. Indicates whether the state change applies only to non-
Is Child State . .
Change Boolean networked devices connected to the interface
identified by the Interface ldentifier property
Device Identifier = Guid The identifier of the device that raised the event
Date DateTime The UTC date and time the event was raised
Interfaces

The management server has the following interfaces:

e |SecureDevice
e INetworkedDevice
e |RaiseCustomStates

Access Point

The following tables describe the properties, methods, events, interfaces, and custom
states for access point.

Properties
Access Point has the following properties.

Default Value &

Name Type Description i

ID string Unique identifier Default: None
. . Min: None

Parent ID string The parent device ID

Max: None

%everbridge‘@

Methods

Access Point has the following methods.

Method

Lock Door (ILockableDoor)

Unlock Door

Description

Lock Door

Unlock Door

(ILockableDoor)

Grant Access
(IGrantAccess)

Events

Grant Access

Access Point has the following events.

Event

Access
Denied

Access
Granted

Forced

Held

Duress

Description

Access to the
access point was
denied

Access was
granted to the
access point

Access Point was
forced open

Access point was
held open for too
long

Duress was

Properties

Name

Reason

First Name
Last Name
Contact Id

Credential
Number

Description
Credential ID
First Name
Last Name
ContactId

Credential
Number

Description
Credential ID
Alarm Status
Description
Alarm Status

Description

Credential ID

Type
string

string
string
string

string

string
string
string
string
string

string

string
string

Returns

Boolean

Boolean

Boolean

Description

The reason for the access
denial

Contact first name
Contact last name
Contact Identifier

Credential used to gain
access

Event description
The Credential ID
Contact first name
Contact last name
Contact Identifier

Credential used to gain
access

Event description
The Credential ID

AlarmStatus The alarm state

string

Event description

AlarmStatus The alarm state

string

string

Event description

The Credential ID

%everbridge‘@

signaled on the ContactId string Contact Identifier
access point Credential . Credential used to gain
string
Number access
T Tamper state Alarm Status = AlarmStatus The alarm state
amper
P change Description string Event description
Locked The access point is n/a
locked
Unlocked The access point is n/a
unlocked
The access point
Open has been opened n/a
Closed The access point n/a
has been closed
Alarm Status = AlarmStatus Fault state
Fault Fault state change T . L
Description string Event description
Disabled Disabled state Failure AlarmStatus Failure state
change Status
Al Alarm state Alarm ID string Alarm ID
arm
change Alarm Status = AlarmStatus Alarm state
Alarm Description string Event description
Alarm has been .
Acknowledg Alarm ID string Alarm ID
d acknowledged — . —
€ Description string Event description
Alarm has been Alarm ID string Alarm ID
Alarm
Cleared cleared from the D ot r Event d ot
system escription string vent description
Interfaces

Access point has the following interfaces

Name

Description

ILockableDoor Interface for a door that can be locked

IGrantAccess Device that supports granting access
Custom States
Access point has the following custom states.

e Door closed
e Dooropen

%everbridge‘@

Output

The following tables describe the properties, methods, events, and custom states for
output.

Properties
Output has the following properties.

Default Value &

Name Type Description Ranges
ID string Unique identifier Default: None
.) Min: None
Parent ID string The parent device ID Max: None
Methods
Output has the following methods.
Parameters
. .. Operator
NEmE DEEET e HEMITE Action . Default Value &
Name Type Description
Ranges
On Switch the bool False n/a
outputon
Off Switch the bool False n/a
output off
e T DetatDone
Pulse P . bool False Order PulseOrder ’ Min: None
short period of then off or)
. . Max: None
time vice versa)
, Activati | . El]ei;‘j"i't‘ None
Timed Switches the on Time :
. output onfora Max: None
Activate . . bool False
given period of Default: None
Output . -
time Status OnOffStatus Min: None
Max: None
Events
Output has the following events.
Properties
Event Description
Name Type Description
Alarm Status = AlarmStatus Fault state
Fault Fault state change

Description | string Event

%everbridge‘@

description
. . Failure .
Disabled Disabled state change Status AlarmStatus Failure state
Alarm ID string Alarm ID
Alarm Alarm state change
Alarm Status | AlarmStatus Alarm state
Description | string Event. .
description
Alarm Alarm has been
Acknowledg Alarm ID string Alarm ID
q acknowledged
© Description | strin Event
P & description
Alarm has been Alarm ID string Alarm ID
Alarm cleared from the Event
Cleared inti i ven
system Description | string description

Custom States
Output has the following custom states.

¢« On
o Off
Input

The following table describe the properties, methods, events, and custom states for Input.
Properties
Input has the following properties.

Name Type Description Default Value &

Ranges
ID string Unique identifier Default: None
. The parent device Min: None
Parent ID string D P Max: None
Methods
Input has the following methods.
Name Description Returns Operator Action
Mask Mf‘;\sk the input so no alarms are bool false
raised
Unmask Unmask the input so alarms can bool false

be raised

%everbridge‘@

Events
Input has the following events.

Properties
Event Description
Name Type Description
- Tamper state | Alarm Status AlarmStatus The alarm state
amper
P change Description string Event description
Fault Fault state Alarm Status AlarmStatus Fault state
au
change Description string Event description
Disabled Disabled state Failure Status AlarmStatus Failure state
change
Al Alarm state Alarm ID string Alarm ID
arm
change Alarm Status AlarmStatus Alarm state
Alarm has Description string Event description
Alarm been Alarm ID string Alarm ID
Acknowledged K ledeed
acknowledged | Description string Event description
Alarm has Alarm ID string Alarm ID
Alarm Cleared been cleared _ . -
from the Description string Event description
system
Custom States
Input has the following custom states.
e Masked
e Alarm
Area
The following tables describe the properties, methods, events, and custom states for Area.
Properties
Area has the following properties.
. . Default Value &
Name Type Description [
ID string Unique identifier Default: None
i Min: None
Parent ID string The parent device

D Max: None

%everbridge‘@

Methods
Area has the following methods.

Name Description Returns Operator Action
Arm Arm the area bool false

Disarm Disarm the area bool false

Events

Area has the following events.

Properties
Event Description
Name Type Description
Fault Fault state Alarm Status AlarmStatus Fault state
au
change Description string Event description
Disabled Disabled state Failure Status AlarmStatus Failure state
change
Al Alarm state Alarm ID string Alarm ID
arm
change Alarm Status AlarmStatus Alarm state
Al Description string Event description
arm Alarm has been .
Acknowled Alarm ID string Alarm ID
d acknowledged — - —
ge Description string Event description
Alarm has been Alarm ID string Alarm ID
Alarm
Cleared cleared from the 5 ot r Eventd ot
system escription string vent description

Custom States
Area has the following custom states.

e Areaarmed
e Areadisarmed

Panel

The following tables describe the properties, methods, and events for Panel.
Properties

Panel has the following properties.

Name Type Description Dl &

Ranges
1D string Unique identifier Default: None
. The parent device Min: None
Parent ID string D P Max: None

%everbridge‘@

Methods
Panel has the following methods.

o - Parameters
Name Description Returns perator L Default Range
Action Name Type Description
& Values
Update the
devices to Sythronlze Default: None
Update match the Refresh device .
. bool false . bool . Min: None
Devices current Properties properties
. . Max: None
configuration and labels
on ACS Server
Events
Panel has the following events.
Properties
Event Description
Name Type Description
T Tamper state Alarm Status AlarmStatus The alarm state
amper
P change Description string Event description
Fault Fault state Alarm Status AlarmStatus Fault state
au
change Description string Event description
Disabled Disabled state Failure Status AlarmStatus Failure state
change
Al Alarm state Alarm ID string Alarm ID
arm
change Alarm Status AlarmStatus Alarm state
Description string Event description
Alarm Alarm has been .
Acknowledged @ acknowledged Alarm ID string Alarm ID
Description string Event description
Alarm has been Alarm ID string Alarm ID
Alarm Cleared | cleared from the L] L
system Description string Event description

%everbridge‘@

Reader

The following table describe the properties and events for Reader.
Properties

Reader has the following properties.

Name

ID

Parent ID

Events

Type

string

string

Description

Reader has the following events.

Event

Tamper

Fault

Disabled

Alarm

Alarm
Acknowled
ged

Alarm
Cleared

Description

Tamper state
change

Fault state
change

Disabled state
change

Alarm state
change

Alarm has been
acknowledged

Alarm has been
cleared from the
system

Properties

Name

Alarm Status
Description
Alarm Status
Description

Failure Status

Alarm ID
Alarm Status
Description
Alarm ID
Description
Alarm ID

Description

Unique identifier
The parent device

Type
AlarmStatus
string
AlarmStatus
string

AlarmStatus

string
AlarmStatus
string
string
string
string

string

Default Value &
Ranges

Default: None
Min: None
Max: None

Description

The alarm state
Event description
Fault state

Event description

Failure state

Alarm ID

Alarm state
Event description
Alarm ID

Event description
Alarm ID

Event description

Using Fire Panel Connector Template

You can quickly and easily create Fire Panel connectors using the Fire Panel template.
Using the standard functionality provided by the Fire Panel template makes it is faster
and easier for you to develop and test your Fire Panel connector.

[llustrated below are the Fire Panel connector designer diagrams.

%everbridg&

Supparted SubsyteTs

Fire Panel Template Connector Structure

The Fire Panel connector template has the following structure.
e Receiver Server
o FirePanel

« FireZone
= Fire Switch
» Fire Devices

Contracts

All contracts that represent physical devices implement IGeoSpatialAware and
IGeoSpatialAwareWithAlt interfaces. These are used for devices that can report their
position. The specific driver implementation may not have these, but they are supplied in
the template.

%everbridge‘@

Contract Description

This is the server device, to which multiple fire panels can be connected. It
is the parent device for only Fire Panels.

It contains code for populating the Panels and then asking Panels to
populate their children. The device population code conforms to latest
ISDK standards and happens asynchronously, with cancellation tokens

included.
ReceiverServer
It also contains logic for propagating device states when the fire panel

gets disabled/enabled, which is necessary due to all other devices being
children of the panel device.

It contains one method contract - UpdateDevices. This method uses the
latest data from the APl and updates the labels and similar information on
every device, as well as adding any new devices.

This contract represents an actual Fire Panel. This device is the parent of
all the other devices, which represents the actual physical system. It
contains code that handles population of all other devices, handles
orphaned devices and propagates device states.

FirePanel

This represents the concept of a zone in a fire panel. While this is not a
physical device, all fire panels include zones to which other devices are
assigned. To avoid adding another level to the structure, simply tie the
devices to zones by adding a property Zoneld to devices.

FireZone

FireSwitch This contract represents the internal switches in the fire panels.

This is a base class for all the other loop fire devices. It is hidden as a
FireDevice contract and cannot be instantiated directly. It has code that allows
setting and updating the state.

The other devices only contain code that makes raising events on them

easier.
e FireOutput
Other e FireBeacon

e FireSounder
e Firelnput

e FireSensor

o FireCallpoint

Events

Almost all events implement |GeoSpatialAwareEvent and
IGeoSpatialAwareWithAltEvent interfaces. These interfaces provide functionality that is
required by Control Center to draw the event on a specific place on the map. If the Fire

%everbridge‘@

Panel system does not supply this information, any information related to these interfaces

can be left out.

Interfaces

The following interfaces are available. Each interface represents the minimum set of
properties, events and methods that each fire device must have.

Interface

IFirePanelDevice

IFireZoneDevice

IFireSwitchDevice

IFireLoopDevice

IFirelnputTypeDevice
IFireOutputTypeDevice

Description

Implements

IGeoSpatialAware
IGeoSpatialAwareWith
Alt

Implements

IGeoSpatialAware
IGeoSpatialAwareWit
hAIlt

Implements

IGeoSpatialAware
IGeoSpatialAwareWit
hAlt

Incoming Data Model

The template uses mocked data types. To make the development of the connector easier,
you should get as close as possible to those data types in the APl implementation.

Additional data can always be added on top, but if the data model implementation uses
the same class names and property names, not much of the device population code needs

to be edited.
Panel

private class NativePanel

{

public string PanelId { get;

}
Zone

Properties

Panelld

set;

Panelld
Zoneld

Panelld
Zoneld
Switchld

Panelld
Zoneld
Deviceld
LoopNumber

}

Events

e ConfigurationChange
e OnlineStateChange
e AlarmStateChange

AlarmStateChange

SwitchPositionChange

e EnabledChange
¢ OnlineStateChange

FirelnputStateChange
FireOutputStateChange

%everbridge‘@

private class NativeZone

{
public string PanellId { get; set; }
public string ZoneId { get; set; }

Switch

private class NativeSwitch

{
public string PanellId { get; set; }
public string ZoneId { get; set; }
public string SwitchId { get; set; }

Device

private class NativeDevice

{
public string PanelId { get; set; }
public string ZoneId { get; set; }
public string DeviceId { get; set; }
public int LoopNo { get; set; }
public DeviceType DeviceType { get; set; }

Connector Project Structure

Everbridge recommends that your driver projects, under the driver root folder, have the
following folder structure:

e Author.CC.Driver.Manufacturer.Product.sln-the connector solution

e Author.CC.Driver.Manufacturer.Product -the connector project folder

e Author.CC.Driver.Manufacturer.Product.Spec -theconnector Unit
Test project folder

e Author.CC.Driver.Manufacturer.Product.TestApp -the connector test
application folder

Connector Name
Everbridge recommends that your connector names have the following format: [
Author].CC.Driver.[Manufacturer].[Product]

e Author - the company that wrote the connector

o Manufacturer - the manufacturer of the subsystem (for example, Bosch, Milestone)

e Product -thesubsystem name and optionally, its version (for example,
MAP5000, ProWatch, OnGuard and so on.)

For example, EVBG.Control Center.Driver.Bosch.BVMS

%everbridge@)

The connector name must be set as:

e the connector solution name

e theconnector project name

o thedefault project namespace
e inAssembly settings:

o Theassembly name
o Theassembly title
o Theassembly product

These should be set in Project — Settings in Visual Studio.

Connector Project Files

Every connector project has the following files:
e Images)\ folder.Contains all the graphics used by the driver.

|CAUTION: Every icon file must have its Build Action set as Embedded Resource.

P Irmages
aPH Burmslogo.png
carmeralB.phg

abH carneraldpng

abH carneraiZpng

aPH camerablpng

sk digitalZoom16.png
sk digitalZoom32.png
abH manufacturerlogo.jpg

s AR Solution Explarer

ameral6.png File Properties

= 2| #
Build Action Embedded Resource
Copy to Output Directory Do not copy
Custorm Tool

Custorn Tool Mamespace

File Marne carneralb.phng

%everbridge‘@

e Devicetypeicons. Each device type has to have four icons of sizes: 16x16, 24x24,
32x32, and 64x64.
4 [rmages

abH Burnslogo.png

abH carmeralfpng

aPH camera2dpng

sk carneral2.png

abH carmerabdpng

aPH digitalZoorm16.png
sbH digitalZoom32.png
sk manufacturerlogo.jpg

sl serverlfipng
aPH serverddpng

abH serveriZpng
abH serverblpng

e Custom State icon. If the connector implements custom states, every state must
have a unique icon. All the icons must be of size 16x16. There are some standard
custom states, for example, TamperState. When using custom states, you do not
need to provide icons.

e Operator Actionicons. If the connector implements any operator actions, every
such action must have a unique icon. All the icons must be of size 16x16. When
using Operator Actions available via built-in interfaces, you do not need to provide
icons.

e Video Operator Action icons. If the connector implements any Video Operator
actions, every such action must have an icon of sizes 16x16. Some Video Operator
actions may also require an icon size 32x32.

e Pictures. The following pictures need to be embedded into the auto-generated
driver documentation.

o configurationdiagram.png.Adiagram describing connectivity
and integration with the subsystem. It should mark the protocols/SDKs used
and show the main connected parties and subsystem key elements and is
integrated automatically in the generated RDIN.

o deviceWizardAddServerDevicel.pngand
deviceWizardAddServerDevice2.png. These show how a new server
device is added into Control Center.

o manufacturerlogo.jpg This shows the manufacturer logo and is shown
both in the documentation and in Control Center.

o productlogo.jpg Thisshows the product picture or logo and is shown
both in the documentation and in Control Center.

%everbridge‘@

e Control Center) folder (sometimes named Contracts\,although Everbridge
does not recommend this). This contains classes implementing device contracts
and other related types: one contract (and file) per device type
F| Ipsc

at* |MarchCamera.cs

a % |MarchDewice.cs

a % |MarchTalkChannels.cs

a % MarchSlarmSource.cs

a €% MarchCamera.cs

a % MarchCES.cs

a % hlarchCRS.cs

a % MarchCustarmlds.cs

a €% harchSwitch.cs

Rl A - A

e app.config. Thisdefinesthe .NET framework version and optionally can define
some dependent assemblies' versions. It can also contain web service definition,
bindings and so on that the driver connects to.

e configurationdiagram.png.Adiagram describingthe connectivity and
integration with the subsystem. It should mark the protocols/SDKs used and show
the main connected parties and subsystem key elements and is integrated
automatically in the generated RDIN.

e *_resx Resourcefiles.To allow for connector localization support, all the text
constants displayed in Ul must be placed in a resource file. Typical files are:

o ErrorMessages.resx.Error messages of different kind.
o [SystemName] Messages . resx.Other Ul messages which are not errors.

e DeviceDefaults.cs.Implements apattern to retrieve default device property
values.

e GlobalSuppressions.cs.Aclass which gets automatically written when a
developer decides to suppress a code analysis error, selecting an option, Global
suppression file instead of In source.

e Linktoa key.snk file.The files used to sign the driver assembly. It must be
signed to produce a driver package. The key should be taken from the current ISDK
branch: C:\Source\DeviceDrivers\ BranchName\key.snk.Forexample,
for trunk drivers branch, thisis C:\Source\DeviceDrivers\Trunk\key.snk

e [SystemName] CameraVideoControl.cs.Custom Control - for video drivers only:
Implementation of the video tile displayed in Control Center.

e Documentation folderincluding the automatically generated driver
documentation files in MS Word format.

%everbridge‘@

Additionally, any connector implemented with Connector Designer Visual Studio
Extension includes the following files under Design.driverdesign:

4 5[Design.driverdesign

P
B
I

a1 Design.driverdesign.ContractBases.cs
5T Design.driverdesign. Contracts.cs

a7 Design.driverdesign CustornStates.cs
a1 Design.driverdesign.diagram

a4 Design.driverdesign.Docurmentation .l
5T Design.driverdesign. Events.cs

a7 Design.driverdesign, Strings.resx

a1 Design.driverdesignideoContrals.cs

All these files and classes are automatically generated each time the Connector Design
surface is saved.

Design.driverdesign.ContractBases.cs.Device Contracts' base classes.
Design.driverdesign.Contracts.cs.Interfaces defining the device
Contracts.
Design.driverdesign.CustomStates.cs.Custom states used by the driver.
Design.driverdesign.diagram. The Driver Designer block diagram defining
the driver components: Contracts, Methods, Events, Custom States and so on.
Design.driverdesign.Events.cs.Device eventsimplementation.
Design.driverdesign.Strings. resx.Resource file with all the names and
descriptions of devices, their properties, events, states and so on.
Design.driverdesign.Events.cs.Device eventsimplementation.
Design.driverdesign.VideoControls.cs.Driver Video Control partial
class which should be extended by the [SystemName] CameraVideoControl.cs.
Implementation.

The driver project references:

CNL.ControlCenter.Driver.dll.The main ISDK DLL, located in:
C:\Source\DeviceDrivers\ DDKBranch\ThirdParty\CNL\DDK
CNL.ControlCenter.Driver.Extensions,
CNL.ControlCenter.Driver.Utility,
CNL.ControlCenter.Driver.Video.Matrix.dll.Optional ISDK file
references, located in the same folder as the main ISDK DLL.

log4net.dl1l.Log4Net DLL used for logging, located in:
C:\Source\DeviceDrivers\ DDKBranch\ThirdParty

é&everbridge@’

o Standard .NET minimum references set
-0 |ogdnet
u-B Systern
u-B Systern.Core
=B Systern.Data
u-B Systemn.Data.DataSetExtensions
u-B Systern.Deployment
u-B Systern.Drawing
=B System.ServiceModel
=B Systemn. Windows.Forms
u-B Systern.Xml
u-B Systern.Xml.Ling
4 Driver

L R L | R

e Other 3rd party references which may be used by the driver, located in

C:\Source\DeviceDrivers\{ISDK Branch}\ThirdParty. Theavailable
libraries include Reactive Extensions, EntityFramework, CsvHelper.dll,
Newtonsoft.Json.dll and more.

e Thereferences needed for the subsystem SDK to work.

%everbridge@’

Using Connector Design Surface

You can design your drivers using the driver design surface.

In Solution Explorer, double-click a .driverdesign file to open the main diagram window.
From here, you can create and link:

contracts
methods
events

custom states
ISDK interfaces
video control
documentation

58

%everbridge“”

Connections
The connections between shapes are color coded.
Color Description

Used for documentation. For custom states, the connection is only
Green used for documentation purposes. Custom states are not constrained
to specific contracts.

Red Connects a method to a contract.

Brown Connects a video control to a contract.
Yellow Connects an event to a contract.
Grey/Blue Connects a built-interface to a contract.
Purple Connects an event interface to an event.

Shapes and Shape Properties
If a property affects documentation, it is marked green.
Documentation Shape

The documentation shape can be connected to a single contract (preferably the main
parent of all other devices). There should only ever be one of these shares per driver.
However, you are allowed to have multiples, in case you have broken the previous shape
and want to create a new one (and use the old one for guidance).

* Supported Operating Systems
* Supported Hardware

* Incompatible Devices

¥ Supported Sdk Versions

* Supported Subsystems
-

%everbridge‘@

Documentation Shape Properties

Property Description

Device

Authentication Select how a connector authenticates with the subsystem. Available options
Method are:None,Basic,Windows,Windows Credentials.

This is arelative path to the image, for example,

Integration Diagram images\configuratinodiagram.png. Theimageisshownin

Image Connector Features. Create a diagram of how the driver interacts with the
subsystem, including protocols used and similar information.

Select how a driver determines the online state of the subsystem. Available
options: None, Socket, Ping, SdkOrQueryDevice. Most drivers use
SdkOrQueryDevice.

Online State
Method

This is the product name. It is used on the title page of all 3 generated
Product Name documents. Do not include the manufacturer name here, only the product
name.

Driver

This property opens a collection editor. Inside the editor default ports that
the connector uses can be entered, along with their description and type. A
default port has these properties:

e Port - the Port number or range.
Default Ports e Port Type - They type of port.
o TCP
o UDP
o Both

e Usage - what is the port used for.

This property opens a collection editor. A known issue has these properties:

e Item- Adescription of the known issue. This information is used in the
Known Issues Known Limitations section in the Functionality document.
e Name - This property is only used in the Connector Designer itself, to
help recognize collection items.

Enter a path to a.docx file that is to be included at the end of the
Additional Details functionality document. The path is relative to the root directory of the
Document (optional) project. Do not worry about the styling in the document. RDIN style rules
are applied automatically.

%everbridge‘@

Installation Guide

Enter a path to a.docx file that is to be included at the end of the Installation

Installation Guide document starting from section 2. The path is relative to the root
Additional Details directory of the project. RDIN style rules are applied automatically.
Document Example path:

Documentation\HoneywellProWatch Configuration.docx
New Device Relative path to the screenshot displaying on the first page of Add Device.

Wizard where user selects the new parent device type to create.

Wizard Image Example path: Images\deviceWizardAddServerDevicel.png

Relative path to the screenshot displaying on the first page of the Add

New Device Wizard Device Wizard where user completes the parent device properties.

Image 2 Example path: Images\deviceWizardAddServerDevice2.png
Video

Web Client If this connector is supported by the Control Center Web Client.
Supported CC Version

Enter a minimum Control Center version that is supported by the
Version connector. The versions should be entered separately. Start from the first
version that supports the ISDK version you are building against.

Supported Operating System

Select whether the operating system is supported on server side, client side
or both.Options available: None.ClientSide.ServerSide

Capacit
pacity NOTE: None means the operating system is supported on both client and

server side.

Select each operating system that is supported by the driver. Normally,
Operating System these will correspond with the operating systems supported by Control
Center, unless an ISDK does not support one of them.

Supported Hardware

Firmware Or Enter the firmware/software version of the hardware that is supported by
Software Version thedriver.

Enter each hardware device model that is supported by the driver.

Model CAUTION: Only enter the top-level devices, such as: Recording Servers,
Access Control Nodes and similar. There is no need to provide an infinite list
of devices.

%everbridge‘@

Incompatible Device

(optional) - only add devices here if there are certain known hardware devices that are supported
by the subsystem that will not work with the driver.

Name Name/model of the incompatible device.
Supported SDK Version
Name Name of the SDK.

Sdk Installation
Location

Sdk Limitations

Version

Opens a collection editor In the editor you can add multiple install
locations. Options available: None, Client,

Server, VideoExportServer,
ConnectionManagerStreamingServer

Opens a collection editor. In the editor you can add SDK limitations. A
limitation has these properties:

e Item- The limitation itself. The information is used in SDK Details table,
Limitations section.

e Name - This property is only used in the Driver Designer itself, to help
recognize collection items.

Enter the supported SDK version range.

Supported Subsystem

Additional Info
Document

Description
Document Links
Name

Versions

Path to a document containing additional information about the subsystem.
You caninsert subsystem diagrams, building blocks and explanations to
include in the Functionality document.

Description of the subsystem.
Any reference documents, such as SDK/API documentation and so on.
Name of the subsystem.

Compatible subsystem versions.

é&everbridge@’

Video Control Shape

Video Control shape is used for video connectors. It generates VideoControl and adds a
custom attribute to the connected contract.

NOTE: In earlier releases, of the ISDK, this shape was associated with the server device.
Now, Everbridge recommends that you associate it with it an actual video device.

leo Control
PidArea
3

Video Control Shape Properties

Video Control shape properties are visible in the Video section of the Functionality
document for the device the shape is connected to.

£ Documentation
De-Warp Suppont False
Operator Actions Explanastions (Collection)
Operator Actions Image
Time Bar Population Method None
Timebar Events False

B Misc
Capture image True
Live Video True
Playback Speeds 4-2-,0124
Playback Video True
Presets True
Pz True

Slow Motion Speeds 0.5, 02 -01,0,01,02 05

Properties that only affect documentation
Property Description

A path (relative to project root) to the image that contains an image of
numbered video operator actions. If no custom operator actions have
Operator been added, this is not necessary.

Actions Image

Operator Opens a collection editor. In the editor, you can add an explanation for
Actions each of the video operator actions. Please order them according to the
Explanation numbering in the image.

How is the timebar populated. Options available:

Timebar e None - Timebar is not populated.
Population e AssumeStorage - Timebar is fully populated regardless of the
method recordings that exist.

e QueryDevice - Timebar displays the actual recordings available.

%everbridge‘@

Timebar Whether the driver supports timebar events. These are available from
Events ISDK 3.3.
De-Warp

Support Whether the driver supports de-warping.

Properties that affect code and documentation
Property Description

If true, generated video control implements ICapture interface for

Capture Image saving snapshots.

If true, generated video control implements ILiveVideoControl

Live Video interface. You can only use this if the driver supports live video.

Playback Playback speeds that the driver (and the SDK) supports. You can only

Speeds use this if the driver supports playback video.

Playback If true, generated video control implements IPlaybackVideoControl

Video interface. You can only use this if the driver supports playback video.

Presets If true, generated video control implements IPresets interface. You can
only use this if the driver supports PTZ presets.

Ptz If true, generated video control implements IPtz interface. You can

only use this if the driver supports PTZ presets.

Slow Motion

Speeds Slow motion playback speeds that the driver (and the SDK) supports.

Contract Shape
Contract shape is used to define devices. It can have multiple other shapes connected.

Contract

FidServer

=l Contract Properties
SpatialReferencelde...
1 Pollinglnterval

Loglevel

%everbridge‘@

Contract Shape Properties

|NOTE: Only the properties that affect documentation are described.

Property
Contract

Custom Attributes

Base Class

Connectable Device

Hidden

Name

Networked Device

Raises Custom State

Secure Device

Manufacturer

Manufacturer
Description

Manufacturer Image

Description

Allows you to apply any attributes to the contract.

Used in case this device contract should inherit from another contract.
Base class for this contract. If a base class is provided, the Dispose
method pattern is not generated in the interface, as it should be
inherited from the base class.

If true, contract implements the IConnectableDevice
interface which provides Connect and Disconnect methods as well as
Timeout and Retry Interval properties.

If true, this device will not show up in any of the documentation. Useful
for base classes.

Name of the generated class/interface. Use this name to reference the
contract in source code.

If true, contract implements the INetworkedDevice interface which
provides IP and Port. INetworkedDevice inherits from
IConnectableDevice, so if this is true, Connectable Device can be set to
false.

If true, methods that allow you to raise custom states are generated in
the contract.

If true, contract implements the ISecureDevice interface which
provides Username and Password properties.

Description of the manufacturer that can be found in Control Center.

Image that can be found in Control Center connector information page

Manufacturer Image Caption

Manufacturer Name

For the contract that is connected to the documentation shape, this
property getsincluded in the title page, under manufacturer name and
title of the document.

Manufacturer Support URL that can be found in Control Center connector information page.

%everbridge‘@

Url
Manufacturer Url

Product
Product Category

Product Description
Product Image

Product Image Caption
Product Name

Product Url
Resources

Product Image (x * x)

Video

Presets

Presets Server

PTZ

Video Export
File Extension
Maximum Exports

Video Export

URL that can be found in Control Center connector information page.

For the contract that is connected to the documentation shape,
product category is on the title page. It may also be used for licensing

Description of the product that can be found in Control Center.

URL that can be found in Control Center connector information page

Name of the device, used in the heading of each device in functionality
document. Examples: BVMS Camera, SymmetryDoor and so on.

URL that can be found in Control Center connector information page.

Icons of the device that will be used in Control Center.

If true, contract implements the IPresetsDevice interface which
provides PresetSelected event, PresetsSupported property and
SelectPreset method. When the PresetsSupported property is set to
True, the Video Control Tile menu includes the preset selector button.

If true, contract implements the IPresetsServer interface which
provides a SelectPreset method.

If true, contract implements the IPtzDevice interface which provides
aPtzSupported property. This interface does not allow a PTZ control,
currently a PTZ control is only allowed on Video Controls. When the
PTzSupported property is set to True, the mouse cursor becomes an
arrow when hovering over Video Control. The PTZ commands are sent
to the video control on mouse clicks and scrolls.

This property is deprecated.
This property is deprecated.

This property is deprecated.

%everbridge‘@

Contract Property
Select a property name in the Contract shape to edit the property look and behavior.

B Advanced

Custorn Attributes

B Constraints
Default Value
Elaximum Value
Minirnum Value

B8 Language
Dezcription
Display Mame

B PFroperty
Category
Device Wizard
Exposed
Hidden
Name
Read I:Inl:,'

Type

Properties

Custom
Attributes

Default
Value

Maximum
Value

Minimum
Value

Description

Display
Name

Category

Device
Wizard

Exposed

Hidden

1231

Imterval at which we poll the server for
Polling Intensal

Properties

True

True

Falze
PollingInterval

Falze
int

Description

Allows to apply any attributes to the property. See Custom ISDK
Attributes.

Used in the documentation for default value of the property, but also sets
a default value in Control Center, through [Default Value] attribute.

ONLY used in the documentation.

ONLY used in the documentation.

Description of the property. Accurate and full descriptions
areencouraged.

The name that is visible in documentation and in Control Center.

Category in which the property is visible in Control Center.

Whether to put the property into device wizard which pops up when a
new device is to be created.

Whether to write the property as operation contract, which allows access
to the property externally through WCF.

If true, the property will be hidden in Control Center and in
documentation.

%everbridge‘@

Name of the generated property. Use this name to reference the property

Name .
in source code.

Read Only Whether to allow writing to the property in Control Center.
Type Type of the property.
Method Shape

Method shape is used to define methods of a device contract. They are implemented as
operation contracts and are also available through WCF.

i ™
Method

Createlirea

= Method Parameters

zonelds
g v

Method Shape Properties

E Advanced
Custom Attributes
El Language
Description
Display Mame
B Method
Category Actions
Exposed True
Hidden False
Is Operator Action Falze
MName CreateArea
Return Type void
Property Description
Custom Allows you to apply any attributes to the method. See Custom ISDK

Attributes Attributes.
Description Description of the method. Accurate and full descriptions encouraged.

Display Name The name that is visible in documentation and in Control Center.

Category in which the method is visible in Control Center. Normally, it

Category should be set to Actions category.

Whether the method should be written as Operation Contract, to allow

Exposed access externally through WCF.

Hidden If true, the method is hidden in Control Center and in documentation.

Is Operator
Action

Name

Return Type

%everbridge‘@

Whether to make the method an operator action. (Show method in the
right click menu available to operators in Control Center).

Name of the generated method. Use this name to reference the method
in source code.

Return type of the method.

Method Parameter Properties

Bl Advanced
Custom Attributes

E Constraints
Default Value
Maximum Value

Minimum Value
B Language

Description

Display Name
B Parameter

Category

Name

Type

Property

Custom
Attributes

Default Value

Maximum
Value

Minimum
Value

Description

Display Name
Category
Name

Type

Identifiers of zones to be added to the a
Zone ldentifiers

Parameters

zonelds
string

Description

Allows to apply any attributes to the parameter. See Custom ISDK
Attributes.

(Not available) Used in the documentation for default value of the
property, but also sets a default value in Control Center, through
[Default Value] attribute.

ONLY used in the documentation.

ONLY used in the documentation.

Description of the parameter. Accurate and full descriptions encouraged.

The name that is visible in documentation and in Control Center.

Category into which the parameter is placed in Control Center. Normally,
this should be set to Parameters category.

Name of the generated parameter. Use this name to reference the
parameter in the code.

Type of the parameter.

%everbridge‘@

Event Shape
Event shape is used to define events that a device contract can raise.
. T
Event
ZoneStateChange

= Event Properties

Zonsstate

o "

Event Shape Properties

Property Description

Custom Allows you to apply any attributes to the event. See Custom ISDK
Attributes Attributes.

The name of the generated event and event arguments classes. Use this

Name .
to reference the even in source code.

Description | Description of the event. Accurate and full descriptions encouraged.

Display

Name The name that is visible in documentation and in Control Center.

Event Property Properties

Property Description

Custom Allows you to apply any attributes to the property. See Custom ISDK
Attributes Attributes.

Description Description of the property. Accurate and full descriptions encouraged.

Display Name The name thatis visible in documentation and in Control Center.

The category in Control Center into which the property is placed.

Category Normally, this should be set to Properties category.

Name Name of the generated property. Use this name to reference the
property in source code.

Type Type of the property.

Custom State Shape

Custom state shape is used to define a custom state. They are not limited to any contracts.
For documentation purposes. Everbridge recommends you connect custom states to
contracts to show where they are being used.

%everbridge‘@

CAUTION: The custom shape must be connected/mapped to a contract to show upin
documentation.

Custom State
Armed o

Custom State Shape Properties

Property Description

Description of what the custom state represents. Used only in

Description documentation.

B;S:]Ey The name that is visible in documentation and in Control Center.

lcon Icon of the custom state that is visible in documentation and Control
Center

Name The name of the generated custom state class. Use this name to reference

custom state in the code.

Built-in Interface Shape

The built-in interface shape is used to allow contracts to implement interfaces that are
defined in the DDK. The interfaces can contain properties, methods and events.

Built-in interface

llntrusionArea

Property Description

Interface Type ISDK interface selected from the list.

%everbridge‘@

Built-in Interface Shape Properties
None

Event Interface Shape

The Event Interface shape is used to allow events to implement interfaces that are defined
in the ISDK, such as GeoSpatial aware events. These interfaces provide events with
properties.

Event interfa...
SpatialAwareWithA... [*

Event Interface Shape Properties
None

Custom ISDK Attributes

Usage of most C# attributes are allowed. For an extensive list of them see
https://docs.microsoft.com/en-
us/dotnet/api/system.attribute?redirectedfrom=MSDN&view=netframework-4.8 This
section defines the attributes that can be entered in Custom Attributes field. There are
more ISDK attributes. However, they are controlled by properties and in most cases
should not be used manually.

NOTE: You may need to specify the full namespace when using these attributes, like
this: [CNL.IPSecurityCenter.Driver.Attributes.Validation.IntegerCon
straint (MinValue = 1, MaxValue = 8)]

Property Value Validation

Custom Attribute Description

Checks for either a Hostname or IP pattern before accepting the
HostNamelPConstraintAttribute entry.
Usage: [HostNameIPConstraint]

Constraints an integer value.
IntegerConstraintAttribute Usage: [IntegerConstraint (MinValue = 1, MaxValue =
8) 1]

Constraints the entry to an integer from O to 65535.

PortConstraintAttribute Usage: [PortConstraint]

Constraints a string value. Usage:

[StringConstraint ("Message Shown When Value
StringConstraintAttribute Invalid", AllowNull = false, AllowEmpty = false,

RegularExpression = @"* ([1-9]1|[1-9]1[0-9]1[0-9] [0~

9112[0-4]110-9]1125[0-5])")]

https://docs.microsoft.com/en-us/dotnet/api/system.attribute?redirectedfrom=MSDN&view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.attribute?redirectedfrom=MSDN&view=netframework-4.8

é&everbridge@’

Constraints a TimeSpan value. Usage:

TimeSpanConstraintAttribute [TimeSpanConstraint (MinvValue = "00:00:10",
MaxValue = "00:10:00")]

Contract Custom Attributes

Custom Attribute Description

Stops Connection Manager from automatically setting all child
DeviceOverridesChildOnlineState devices to online state when parent comes online. This allows
individual control of device states

Other Attributes

Custom Attribute Description

When there are serialization changes between driver versions, this
SupportedPreviousDriverAttribute = attribute can be used to convert objects of the old driver to the

new driver.
Toolbox
Toolbox contains a list of items that you can add to the diagram.
! 4 Design
L) Poimtes

@ Contract

@& Method

O Event

& Documentation

@ Video Control

O Built-In Interface

@ Event Interface

Custorn State

Contract to Methed
Contract to Event

Contract to Documentation
Contract to Video Controd
Contract to Built-In Interface
tvent to Event Intesface
Pacrernt To Child Contract

Contract to CustomState

B i, G S S B See S

%everbridge‘@

Right Click Menu

The right click menu contains additional commands that can be executed on the
Connector Designer. Currently, there is a single extra command, but this may be extended

in the future.
alH configurationdiagram.png
b &[] Design.driverdesign

b & c# DeviceDefaults.cs Driver Designer : Update Documentation
b B0 ErrorMessages.resx @ Open

& C* GlobalS ions.

e obalSuppressions.cs Open With.

Gl key.snk
b &R Messages.resx Code Cleanup]

Update Documentation

Running Update Documentation should generate a new xml file that can be opened using
Microsoft Word (not tested below 2010 version).

Documentation Generation Failures

Sometimes documentation generation fails. In Visual Studio 2019, if upon generating

documentation, you see errors in the Error List, or your generated xml file contains
ErrorGeneratingOutput, please restart your visual studio (all instances) and try again.

Device Contract

A device contract must be defined for every device type supported by the driver. The
contractis an interface used as the WCF service extension. A device contract is defined by
a C# interface and its implementation.

NOTE: The device types are called 'contracts' because Connection Manager exposes
WCEF 'Connection Manager' service where different types are presented as the service
contracts.

A device contract is typically implemented by 3 classes:

1. Interface derived from IDevice. These classes are automatically generated by a
driver designerin Design.driverdesign.Contracts.cs. Forexample,

public partial interface IFusionCatalystServer : IDevice

2. Class derived from the Device DDK base class. These classes are automatically
generated by a driver designer in
Design.driverdesign.ContractBases.cs.Forexample,

public abstract class FusionCatalystServerBase : Device, IDisposable

%everbridge‘@

3. Device class implementing the interface in step 1 and derived from the base class in
step 2. This class is written by the driver developer implementing the relevant
business logic. For example,

public class FusionCatalystServer : FusionCatalystServerBase,
IFusionCatalystServer, IDeserializationCallback

Device Contract Class Format

Constructor

You must implement a parameterless constructor to create the device manually by right-
clicking New > Device on menu.

CAUTION: Never implement protected Serialized class members as this leads to
serialization problems when new devices are populated.

Private Fields
Most private fields need to be marked as non-serialized.

[NonSerialized]
private ILog log;

Such fields need to be initiated not just in a constructor, but also in a special method
InitializeFields () calledwhenthe deviceisbeen deserialized when the connector
is been loaded in the Connection Manager.

For example, a typical non-connectable device contract is shown below.

[Serializable]
[ServiceBehavior (InstanceContextMode = InstanceContextMode.Single)]
public class AccessPoint : AccessPointBase, IAccessPoint,
IDeserializationCallback
{
[NonSerialized]
private ILog log;

//this is called when a new device is created in Control Center
public AccessPoint ()
{
Interfaces.Add (new DeviceInterface (DevicelnterfaceType.Door,
"Door Output", "1"));
InitializeFields () ;

}

//this is called when device is deserialized from Database
public void OnDeserialization (object sender)
{

InitializeFields () ;

}

private void InitializeFields()

{
//initialize any non-serialized fields here
_log = LogManager.GetLogger ("Access Point");

%everbridge‘@

//subscribe to EnabledChanged to set the device to correct state
EnabledChanged += AccessPointEnabledChanged;

}

}
In some special cases, usually when a device needs to persist its state even when
Connection Manager is offline, the field can be declared without the [NonSerialized]
attribute, so it will be serialized into Connection Manager database. These properties
should be initialized in constructor and notinthe InitializeFields ().
[Serializable]

[ServiceBehavior (InstanceContextMode = InstanceContextMode.Single)]

public class VideoCamera : VideoCameraBase, IVideoCamera

{

private PresetCollection presets;

public VideoCamera ()

{
_presets = new PresetCollection();
InitializeFields () ;
}
}

Drivers Public Methods

Connect () is called when a Connectable device is Enabled in Control Center or a
Connectable device has not connected (the device has not reported Online state) during
the time period set by the Timeout property.

There are four basic elements typically present in Connect () method implementation:

1. Initialization and connection to the subsystem.

2. Get the list of relevant subsystem devices, and populate the relevant Control
Center child devices.

3. Subscribe to events and alarms.

4. Start monitoring the connection with the subsystem, if not automatically provided
by the subsystem API/SDK.

Disconnect () iscalled when a Connectable device is Disabled in Control Center.
Implement resources design patterns here, and not in Dispose ()

Connectable Device Contract Class Implementation

Create a Contract on Driver Design surface.

Add and connect relevant Methods, Events, Custom States, and Interfaces.
Create device contract class.

Implement Connect () method.

Implement Disconnect () method.

Raise the events created in 1.

Implement the methods created in 1.

Set device states.

N~ E

%everbridge@’

Non-Connectable Device Contract Class implementation

Create a Contract on Driver Design surface

Add and connect relevant Methods, Events, Custom States, and Interfaces.
Implement device contract class.

Handle EnabledChanged event.

Raise the events created in 1.

Implement the methods created in 1.

. Set device states.

Populating Child Devices

Once a connectable device has established a connection with a subsystem, the next step is
to retrieve a list of relevant physical entities (cameras, doors) or logical entities (inputs,
areas) and create Control Center devices connected to the parent device.

Devices use interfaces to connect to other devices. Each Control Center device can have a
list of interfaces.

NouprwNp

Child devices

Interfaces[0]

Parent device

Device interfaces

77

%everbridge‘@

Device population needs to occur in the following scenarios:

1. Parent connectable device is Enabled and successfully connected to the
subsystem. For example, server device is connected to an NVR and needs to
populate camera devices.

2. Fordrivers with multi-tier device hierarchy, a non-connectable device is Enabled.
For example, in an ASC driver a Door Controller device is Enabled and needs to
populate the doors connected to this controller.

3. Astandard method, Update Devices, sometimes called Repopulate Devices or
Sync Devices, is invoked on a parent device.

NOTE: Each child device Contract class must implement a parameterless Constructor,
otherwise Control Center cannot create a new device using the Device Wizard in Control

Center.
Populating Single Child Device
var customIdentifier = input.ID; //custom identifier must be unique,

typically provided by a native SDK;

if (!Interfaces.Contains (customIdentifier))

{
var inputDevice = GetConnectedDevice<HuperInput> (customIdentifier);
if (inputDevice == null)

{
// creating a new input device
inputDevice = new HuperInput
{
Label = input.Name,
Id = input.Id
}i

try
{
// Creating the device interface and connecting it to the server
interface
var serverInput = new DeviceInterface (DeviceInterfaceType.Other,
inputDevice.Label, customlIdentifier);
this.Interfaces.Add (serverInput) ;
serverInput.Connect (inputDevice.Interfaces.First());
}
catch (ArgumentException ex)
{
_log.Error(S$S"{IP}: Failed to populate Input device -
{ex.Message}l", ex);
}
catch (InvalidOperationException ex)
{
_log.Error ($"{IP}: Failed to populate Input device -
{ex.Message}l", ex);
}
}

%everbridge‘@

Populating Multiple Child Devices

var newConnections = new InterfaceConnectionCollection();
var devicesAdded = false;
foreach (var camera in sdkCameras)
{
var customIdentifier = camera.ID; //custom identifier must be
unique, typically provided by a native SDK
var cameraDevice =
GetConnectedDevice<AxisCamera> (customIdentifier) ;
if (cameraDevice != null)

{

//The camera device already exists in the system
_log.Info("Skipping camera {0}", camera.ID):;
//update the camera device' properties if needed and save
them by invoking OnPropertyChanged on the device
}
else

{
try

cameraDevice = new AxisCamera
{

Label = camera.Name
bi
if (!Interfaces.Contains (customIdentifier))
{

AddToConnections (customIdentifier, cameraDevice,
newConnections) ;
devicesAdded = true;

}

catch (ArgumentException ex)

{

throw new

FatalDriverException (ErrorMessages.FailedToPopulateCamera.CurrentFormat (ex.Me
ssage)) ;

}

catch (InvalidOperationException ex)

{

throw new
FatalDriverException (ErrorMessages.FailedToPopulateCamera.CurrentFormat (ex.Me
ssage)) ;
}
}
}

// Adds all the new connections to the database in one go
if (devicesAdded)
{
Interfaces.AddAndConnectRange (newConnections) ;
}
//create a new interface on parent device
private static void AddToConnections (string customIdentifier, IDevice
device, InterfaceConnectionCollection newConnections)

{

%everbridge‘@

if (device == null || newConnections == null)

{

return;

}

var serverInput = new DeviceInterface (DevicelnterfaceType.Video,
device.Label, customIdentifier):;
newConnections.AddAndConnect (serverInput, device.Interfaces[0]);

}

Notes:

o Ifthe population of devices takes significant time and you put it on a background
Task remember to provide for task cancellation if the server is taken offline.
See Populating Devices as a Background Task

e Alsoremember to block multiple instances of the task, if an update capability is
provided as an exposed method.

Populating Large Number of Devices

Populating many devices at once is a relatively expensive SQL operation and may get a
SQL Transaction timeout in Connection Manager. This means only part of the device
set gets populated and may lead to inconsistencies in the database. The solution is

to populate devices in small batches, so each small population transaction is successful.

Populating Devices as a Background Task

Although your development environment may have only a few devices to work against,
your production environment may have many hundreds of devices/sensors. This can lead
to the connect/population of devices taking many minutes, possibly, causing

the Connection Manager to fail the device.

A workaround is to pass the population of devices onto a background task, leave it to
complete and indicate the device as Online as soon as its connected to the subsystem
(rather than waiting until all the devices are populated).

Notes:

e ifnoerror handling/checking is implemented in the background task then device
population can fail with no indication of the failure. In other words, not all devices
are created/populated.

e no checking of the status of background task means:

if the device is taken offline, the background device creation task continues.
Changing the device state rapidly (for example, pressing F12 multiple times
to enable/disable a parent device) can cause multiple background device
creation tasks to be active, leading to duplication of devices in the system.

%everbridge‘@

Populate Child Devices With a Task Cancellation
In the parent device class, add the following:

[NonSerialized]
private CancellationTokenSource tokenSource;
[NonSerialized]
private CancellationToken cancelToken;
[...]
/// <summary>
/// Connects to the physical device.
/// </summary>
[SuppressMessage ("Microsoft.Design",
"CA1031:DoNotCatchGeneralExceptionTypes")]
public override void Connect ()
{
try
{
CheckDisposed() ;
var username = DeviceDefaults.DefaultUsername (this) ;
var port = DeviceDefaults.DefaultPort (this);
[cool
log.InfoFormat (CultureInfo.CurrentCulture,
ErrorMessages.ConnectingText, username, IP, port);
lock (lockInstance)
{
Disconnect () ;
//
// Should never get to this state
// but just in case
//
if (tokenSource != null)
{
tokenSource.Cancel () ;
tokenSource.Dispose () ;
}
tokenSource = new CancellationTokenSource () ;
cancelToken = tokenSource.Token;
if (string.IsNullOrEmpty (IP))
{
throw new
ArgumentException (ErrorMessages.IPAddressNotSpecified) ;
}
[...]
log.DebugFormat (CultureInfo.InvariantCulture, "Last Event
Received: {0}", LastEventReceived) ;
if (RetrieveOfflineEvents &&
(!string.IsNullOrEmpty (LastEventReceived)))
{
Task.Run(() => GetOfflineEvents (cancelToken), cancelToken);
}
Task.Run (() => PopulateDevices (cancelToken), cancelToken) ;
[...]
}
}
catch (DeviceException ex)

{

%everbridge‘@

log.Error (ex.Message, ex);
OnStateChanged (DeviceState.Failed, ex.FullMessage) ;

Disconnect () ;

}

catch (Exception ex)

log.Error (ErrorMessages.DeviceConnectionFailed, ex);
OnStateChanged (DeviceState.Failed,
ErrorMessages.DeviceConnectionFailed + Environment.NewLine + ex.Message);

Disconnect () ;
}
}
/// <summary>
/// Disconnects from the physical device.
/// </summary>
public override void Disconnect ()
{
PropertyChanged?.Invoke (this, new
PropertyChangedEventArgs (string.Empty)) ;

CheckDisposed() ;
log.InfoFormat (CultureInfo.CurrentCulture, ErrorMessages.Disconnecting,

DeviceDefaults.DefaultUsername (this), IP, DeviceDefaults.DefaultPort (this)):;
[...]
lock (lockInstance)
{
//

// Cancel any running background task

//
tokenSource?.Cancel () ;
[oaol
}
//
// and destroy the token source/token from the system
//
tokenSource?.Dispose () ;

tokenSource = null;
log.InfoFormat (CultureInfo.CurrentCulture, ErrorMessages.Disconnected,

DeviceDefaults.DefaultUsername (this), IP, DeviceDefaults.DefaultPort (this))

}
/// <summary>
/// Populates the devices connected to the server.

/// </summary>
private void PopulateDevices (CancellationToken token)
{
try
{
//

// Was cancellation already requested?

//

if (token.IsCancellationRequested)

{

log.InfoFormat ("Task {0} was cancelled before waiting for
network data.", MethodBase.GetCurrentMethod () .Name) ;
token.ThrowIfCancellationRequested() ;

}
// // if you split the population into additional methods

remember to hand the token through to those and check

%everbridge‘@

// at each stage for termination so as to terminate the task as
quickly as possible, otherwise

//

// Foreach device

// is cancelation requested?
// break out the task

// else

// add device

//

[...]
}

catch (Exception ex)
{
//
// report something here
//
loool

}

Repopulating a Deleted Device

You can repopulate a child device that has been previously deleted. As the parent device
still has the Interface created for the deleted child device, repopulating the child device
means:

1. Create anew child device object
2. Connect the interface on the parent server to the first Interface on the new child

device:
Interfaces[customIdentifier].Connect (cameraDevice.Interface
s[0]);

var newConnections = new InterfaceConnectionCollection();

var devicesAdded = false;
foreach (var camera in sdkCameras)
{
var customIdentifier = camera.Id;
var cameraDevice =
GetConnectedDevice<AmsCamera> (customIdentifier) ;
if (cameraDevice == null)
{
// Create new device
cameraDevice = new AmsCamera
{
Label = camera.Name
7
if (Interfaces.Contains (customIdentifier))
{
//repopulate the camera device
Interfaces[customIdentifier].Connect (cameraDevice.Int
erfaces[0]);
}
else
{

var serverInterface = new

%everbridge‘@

DeviceInterface (DevicelInterfaceType.Video, cameraDevice.Label,
customIdentifier) ;
newConnections.AddAndConnect (serverInterface,
cameraDevice.Interfaces[0]) ;
devicesAdded = true;
}
}

//set additional device properties if needed

}
if (devicesAdded)

{

Interfaces.AddAndConnectRange (newConnections) ;

}

Navigating Device Hierarchy
Get Child device

There are two methods available to get a connected child device from a parent device.

1. T GetConnectedDevice<T>(string customIdentifier) whereT:
IDevice
Returns null if no connected device is found.

Example of usage: in the parent device class run:

Camera cameraDevice =
GetConnectedDevice<AccessControlController> (customId) ;

Runs Stored Procedure Read_DeviceChildrenByCustomldentifier on CM Database,
selects the first child device which custom ID is as given. This means that custom ID
must be unique for its parent device, in other words, custom ID is not necessarily
globally unique.

2. T GetConnectedDevice (DeviceInterface deviceInterface) where
T :IDevice

Returns null if no connected device is found.

INOTE: This method is rarely used.

Example of usage:

Camera cameraDevice = GetConnectedDevice<Camera> (Interfaces[0]);

Get Parent Device

T GetConnectedParentDevice<T> () where T : IDevice

If the device has no parent throws Nul1ReferenceException.

%everbridge‘@

Usage: in the child device class run:

var parentDevice = GetConnectedParentDevice<VideoServer> () ;

NOTE: if the camera has more than one parent device, the method will return the parent
added the first. This should not normally happen, but it can be achieved, for example, by
manually connecting Device Interfaces using the Manage Device Connections optionin
Control Center’s System Configuration.

Get Device Custom Identifier (String) from Device GUID

private string GetCustomIdentifier (Guid deviceldentifier)
{

var serviceFactory = new ServiceFactory();

var deviceDescriptorFactory =
serviceFactory.GetService<IDeviceDescriptorFactory> () ;

var deviceDescriptor = deviceDescriptorFactory.Create (deviceldentifier);

if (deviceDescriptor.Interfaces.Count > 0 &&
deviceDescriptor.Interfaces[0] .ConnectedInterfaces.Count > 0)

{

return

deviceDescriptor.Interfaces[0].ConnectedInterfaces[0] .CustomIdentifier;

}

return null;

}
Get Device from Device GUID

Guid deviceld =

var serviceFactory = new ServiceFactory();

var deviceRepository = serviceFactory.GetService<IDeviceRepository>();
var cameraDevice = deviceRepository.Read<NextivaCamera> (deviceld) ;

Check whether the device is connected to another device (checking its list of Interface
connections):

var serviceFactory = new ServiceFactory();

var deviceDescriptorFactory =
serviceFactory.GetService<IDeviceDescriptorFactory> () ;

var deviceDescriptor = deviceDescriptorFactory.Create (deviceldentifier);
var connectionInfo = deviceDescriptor.SimpleConnectionInformation; return
connectionInfo.Count > 0;

Find a parent device by a child device GUID (parent device on another driver)

private static Device FindParentVideoServer (Guid playbackCameraldentifier)

{

var factory = new ServiceFactory();

var descriptorFactory = factory.GetService<IDeviceDescriptorFactory> () ;
DeviceDescriptor cameraDescriptor = null;
try

{
cameraDescriptor = descriptorFactory.Create (playbackCameraldentifier);
}
catch (NullReferenceException)
{
throw new ConfigurationException ("Cannot find video playback camera
specified in the configuration.");

%everbridge‘@

}

var serverldentifier =
descriptorFactory.Create (playbackCameraldentifier) .SimpleConnectionInformatio
n[0] .ParentIdentifier;

var deviceFactory = factory.GetService<IDeviceRepository>();

return (Device)deviceFactory.Read<IDevice> (serverIdentifier);

}
Another example, used in any CCTV driver in Initialize() method:

private DeviceConnectionInformation connectionInformation;

private IVideoServer server;

public void Initialize (Guid deviceIdentifier, IDeviceDescriptorFactory

deviceDescriptorFactory, IDeviceRepository deviceRepository)

{

var cameraDescriptor = deviceDescriptorFactory.Create (deviceldentifier);
var connectionInformation =

cameraDescriptor.SimpleConnectionInformation.GetByParentType (typeof (IVideoSer

ver)) ;
_server =

deviceRepository.Read<IVideoServer> (connectionInformation.ParentIdentifier);

}

Device Interfaces

Each Control Center device has a collection of Control Center Device

Interfaces. A Control Center Device Interface models a logical or physical connection to
another device.

It is represented in the Control Center ISDK asa DeviceInterface class. The
DeviceInterface class has the following properties:

Property C#Type
Identifer GUID
Label string
Customldentifier string

Type DeviceinterfaceType

%everbridge@)

Device Connection

To connect 2 Control Center devices, each device must have a Control Center
Device Interface (see Device Interfaces for more information) and there should be a
connection between the two Control Center Device Interfaces.

Notes:

e The custom identifier may not necessarily be the same on both Control Center
Device Interfaces.

o Both Control Center Device Interfaces must have the same Type (for example,
DevicelInterfaceType.Door,DevicelnterfaceType.Video andsoon).

Interfaces[0]

Parent [N - Child

Device Device

Typically, a device connection is needed when child devices are populated by a parent
server device. For example, in a VMS system, a parent device is a VMS server and a child
deviceisan NVR or DVR or a camera.

The following example connects 2 devices in an Access Control system. The child device is
adoor.

Child Device Class

public Door ()
{
Interfaces.Add (new DeviceInterface (DevicelnterfaceType.Door,
"Door Output", "1"));
}

Server (Parent) Device Class

Device doorDevice = ... //either create new device or get an existing
Control Center device

//custom Identifier must be a unique identifier typically provided
by the subsystem SDK/API

var customIdentifier = doorId.ToString();

var serverInput = new Devicelnterface (DeviceInterfaceType.Door,
doorDevice.Label, customIdentifier);

this.Interfaces.Add (serverInput) ;

serverInput.Connect (doorDevice.Interfaces[0]); //connect up the 2
Device Interfaces

The Interface connection is saved in Connection Manager database, in
DeviceInterfaceConnection table:

id device lidentfier deviceinterface Tidentifier deviceZidentfier deviceinterface 2dentfier
1 B198D8EF-7585-4A48-8E54-14FCBEFEOBSA 822EQEAS-7EBB-4ACS-BSCICA272E50S5F9 15ASA728-BBE3-4E30-AE73-EQITAFIBCA52 BACDHB295-089F4B52-88E4-ACIEBB71D032 BDESDASC-CCIF-4675-9BAS-AEBS0S3SDATY

é&everbridge@’

To view and manipulate Device Interface connections in Control Center

1. By expanding the Device Interfaces node in System Configuration.
= g Prowatch Server 1

|~_{¢?‘ Events

|) shorteuts

ﬁ Flaceholders

E Interfaces
E! Default Monitorable Input Interface (1 connector)
EE Default Contrallable Output Interface (1 connectar)
E! Door_A Interface (1 connector)
E! Areal Interface (1 connectar)
E! Door_C Interface (1 connectaor)

0 EHBH
B EHE

F

2. InSystem Configuration, right-click on your device and select Manage Device
Interfaces.

From Device To Device
ProWatch Server ~ | Interfaces for ProWatch Server 1 Pro-Watch Door ~
& ProWatch Server 1 & Areal & Door C
& Default Cortrollable Output
&# Default Monitorable Input
& Door_A
7 Door_C
Add
Device 1 Interface 1 Device 2 Interface 2
&7 ProWatch Server 1 Daoar_C Door_C Door Output
&P ProWatch Server 1 Areal Areal Area Output
&7 ProWatch Server 1 Door_A Door_A Door Output
&5 ProWatch Server 1 Default Contrallable Output Default Controllable Output Door Output
& ProWatch Server 1 Default Manitorable Input Default Monitorable Input Dioor Output
Delete
Finish > Cancel

Connectivity Monitoring

Connectable devices, in other words, Control Center devices which implement a device
interface, must implement some connectivity check logic to report when the
corresponding physical device or server is disconnected or re-connected.

%everbridge‘@

Reflecting Current Device State

Devices must always reflect their current state.

On connection

On change state event

Onre-enabling the device. Important: in Control Center 4.9 the device goes to
Online by default. To workaround this, subscribe to EnabledChanged eventon
the ISDK base class device. Example:

private void InitializeFields ()
{ EnabledChanged += MxProDevice EnabledChanged;
;rotected override void Dispose (bool disposing)
{ if (disposing)

EnabledChanged -= MxProDevice EnabledChanged;
} base.Dispose (disposing) ;
}
private void MxProDevice EnabledChanged (object sender,
EventArgs e)
{
if (!Enabled)
{
return;
}
//must run in a separate thread otherwise the delay won't
have any effect
Task.Run (() =>
{
//resolve race condition: wait until Connection Manager
sets the device to Online state
Thread.Sleep (DeviceEnabledDelay) ;
//update the current device state
InitDeviceState () ;
1)
}

Device was removed from the 3rd party. The corresponding Control Center device
must be in Failed state and have a description of Device doesn't exist or Device
not found. The work around is to compare the list of Control Center devices and
the list of the 3rd party devices. The .Except () LINQ method gives you the
orphaned devices. Example:

private void UpdateOrphanedDevices (IEnumerable<string>
knownDevicesCustomIds)
{

//all the devices which are not in the collection of
knownDevicesCustomIds don't represent any Pro-Watch entity - set to
Failure

var orphanedCustomIds = Interfaces.Select (each =>
each.CustomIdentifier) .Except (knownDevicesCustomIds) ;

%everbridge‘@

foreach (var customId in orphanedCustomIds)
{
string id;
var deviceType =
SateonCustomIds.ParseDeviceCustomId (customId, out id);

IDevice device = GetConnectedDevice (customId) ;
var sateonDevice = device as ISateonDevice;
if (sateonDevice != null)

{
sateonDevice.SetState (DeviceState.Failed,
ErrorMessages.DeviceDoesntExist) ;
}
}
}

e Device was renamed in the 3rd party. In this scenario there are two possible
workarounds:

o Ifan SDK supports events about devices been renamed - automatically
rename Label property of relevant Control Center devices

o IfanSDK doesn't support such events - add a separate
method UpdateDevices () which polls all the devices' current name and
properties and updates them in Control Center. Note: the device Contract
must implement the INotifyPropertyChanged interface to update

Properties

Reporting Child Device States

There are two ways of reporting child device states in Control Center ISDK.
e Find the child device Interface. Example:

var cameralnterface = Interfaces.FirstOrDefault (interf =>
interf.CustomIdentifier == deviceld);
if (cameralnterface != null)

{

OnStateChanged (cameralnterface, DeviceState.Failed,
CustomErrorMessages.CameraConnectionStateDisconnected) ;

}
e Get the actual child device and raise a public method onit.
o Getthedevicein the parent device class. Example:

var device = GetConnectedDevice<IDevice> (customId) ;
if (device != null)
{
device.SetState (DeviceState.Failed,
ErrorMessages.DeviceNotFound) ;

}

o The public method in the device Contract class:

public void SetState (DeviceState state, string message)
{
if (!Enabled)
{

return;

%everbridge‘@

}

if (_session != null)

{

_log.Debug (MxProMessages.SettingDeviceState.Curren
tFormat (Label, state, message));

}
if (string.IsNullOrEmpty (message))

{
OnStateChanged (state) ;

}

else

{
OnStateChanged (state, message) ;

}
}

Custom States

In addition to the built-in standard states, a device can also expose custom states, for
example, 'door locked', 'zone armed'. A device can only have one current state. If adoor is
set to a custom state 'door locked' it will no longer be online or failed and these states
have to be assumed.

There is no way to retain custom states information after reconnecting to a 3rd party
system if your APl does not support current state polling.

NOTE: You should not store a state cache in a database as the states may become
outdated while a device is offline.

The example below implements custom states without using a connector designer
surface.

Implement a CustomStateChanged event in the device contract class.

[field: NonSerialized]
public event EventHandler<CustomStateChangedEventArgs> CustomStateChanged;
private void OnCustomStateChanged (CustomStateChangedEventArgs e)
{
if (e == null)
{
throw new ArgumentNullException ("e");
}
if (CustomStateChanged != null)
{
CustomStateChanged.Invoke (this, e);
}
}
}
public void RaiseCustomStateChanged (ICustomState state, string message)
{
if (state == null)
{
throw new ArgumentNullException ("state"):;

}
OnCustomStateChanged (new CustomStateChangedEventArgs (Identifier,

%everbridge‘@

state, message));

}

Implement the following methods in the device contract class:

public void RaiseStateChanged (DeviceState state, string message)
{
OnStateChanged (state, message) ;
}

Implement your Custom States - class per state
Example using System:;

namespace CNL.ControlCenter.Driver.Verint.Nextiva.Ipsc.States
{
/// <summary>
/// The recording off state.
/// </summary>
[Serializable]
public class OfflineState : ICustomState
{
/// <summary>
/// Gets the end user displayable name for the state
/// </summary>
public string DisplayName
{
get { return "Offline"; }
}
/// <summary>
/77 Gets the icon
/// </summary>
public string Icon
{
get { return
"CNL.ControlCenter.Driver.Verint.Nextiva.Images.CameraOfflineState.png"; }
}
}
}

Custom State Race Condition
There are 3 scenarios that can cause a device state not to be updated.

e Tryingtoupdate individual child devices after a parent device goes Online.
e Re-enablingadevice
o Faststate updates

To workaround this, remember the last state change on each device. If the current state
came too soon, add a time delay to let the previous state change, finish processing).
Example:

[NonSerialized]
private DateTime lastStateUpdate;
private void InitializeFields ()

{

_lastStateUpdate = DateTime.MinValue;

%everbridge‘@

private void UpdateCurrentState (AcsInput<string> input)
{
//prevent state update race condition when adjacent state updates
arrive
if ((DateTime.Now - lastStateUpdate) .TotalMilliseconds < 500)
{
_log.Debug ("Input '{0}': wait for {1} msec. before state
update".InvariantFormat (Label, SateonSession.CustomStateUpdateDelayMsec)) ;
Thread.Sleep (SateonSession.CustomStateUpdateDelayMsec) ;
}
//set the current state here
_lastStateUpdate = DateTime.Now;

}

Device Properties

NOTE: You can set connector properties manually but Everbridge recommends that you
use the Design Surface.

Supported Property Types
NET types: uint, short, byte and any 64 bit type are not supported.
Custom type properties can be defined but you must provide the full type name.

Default Property Values

You can set default value property values in connector design surface, but it only works if
the custom attributes property is not set.

You can also set it manually by using the standard .NET Custom attribute.
[DefaultValue (2000)]

or use a different overload DefaultvValue (type, string):

[DefaultValue (typeof (TimeSpan) ,"00:00:01")]

You can set a default DateTime property value. For example:

[DefaultDateTime (DateTimeOrigin.Now, DateTimeOperation.Subtract, 0, 10, 0)]
DateTime from

[DefaultDateTime (DateTimeOrigin.Now)]

DateTime to

To configure the default value displayed in Device Wizard, set the value directly in the
class constructor.

Add a New Property

To manually add a property to a device, declare the type and property name, and then add
the following attribute lines above the declaration.
[DisplayName (“<Name of declared Variable>")]

[Description {"description of what the property does/defines>"}]

[CategoryProperties]
<property Type> <Property name>;

%everbridge‘@

Make a Property Read Only

To make a device property read only, add the Attribute to the Custom Attributes
property:
[System.ComponentModel .ReadOnly (true)]

Saving and Persisting a Property

To save a device property programmatically, the device Contract class must implement
the INotifyPropertyChanged interface:

[Serializable]
[ServiceBehavior (InstanceContextMode = InstanceContextMode.Single)]
internal class GalaxyOutput : GalaxyOutputBase, IGalaxyOutput,
IDeserializationCallback, IGalaxyDevice, INotifyPropertyChanged

{

[field: NonSerialized]
public event PropertyChangedEventHandler PropertyChanged;

/// <summary>
/// Raises PropertyChanged event which causes the recently updated
properties saved into Database.

/// </summary>
public void SaveChangedProperties (PropertyChangedEventArgs e)
{

if (PropertyChanged != null)

{

PropertyChanged.Invoke (this, e);

}

}
Saving all the properties can be implemented like this:

public void SaveChangedProperties ()
{
if (PropertyChanged != null)
{
PropertyChanged.Invoke (this, new
PropertyChangedEventArgs (string.Empty)) ;
}
}

é&everbridge“g

Validating Property Values

Property values should be validated in two places:

1. Incode
2. Inthe Property Grid. Assign Custom Attributes property in the driver designer.
Examples:
o Integer:

[CNL.IPSecurityCenter.Driver.Attributes.Validation.IntegerConstra
int (MinValue=0, MaxValue=int.MaxValue)]

String:

[CNL.IPSecurityCenter.Driver.Attributes.Validation.StringConstrai
nt ("The API key must not be empty",AllowNull = false,AllowEmpty =
false)]

IP:

[CNL.IPSecurityCenter.Driver.Attributes.Validation.StringConstrai
nt ("The 'Local Address' property must be set to a valid IP4
address",

AllowNull = false, AllowEmpty
@"~([1-911[1-9]1[0-9111[0-9]I
911 11-9110-911110-91[0-91121

GUID:

[CNL.IPSecurityCenter.Driver.Attributes.Validation.StringConstrai
nt ("The 'Recording ID' parameter must be in a form of a wvalid
GUID string: XXXXXXXX—XXXX-XXXX~-XXXX-XXXXXXXXXXXX",

= false, RegularExpression =
112[0-4110-9]1125[0-5]) (\. ([0~
]

0=9
0-4]1[0-9]1125[0-5])) {3}s")]

AllowNull = false,AllowEmpty = false,RegularExpression = @"\b[a-
fA-F0-9]{8} (?:-[a-fA-F0-9]{4}) {3}-[a-fA-F0-9]{12}\b")]

TimeSpan:

[CNL.IPSecurityCenter.Driver.Attributes.Validation.TimeSpanConstr
aint (MinvValue="0:0:1", MaxValue="1:0:0")]

Port (integer):

[CNL.IPSecurityCenter.Driver.Attributes.Validation.PortConstraint

]

%everbridge‘@

Detecting Property Value Changes

There is no direct way to detect device property values in the connector designer. You
must implement a property in code.

Below is some sample code taken from FusionFC4000 connector.
1. Expand the device interface (add partial class):

public partial interface IFusionCatalystWebSource

{
[CategoryProperties]

[DeviceWizard]
[DisplayName ("CNL.ControlCenter.Driver.Jupiter.FC4000.Design.dr
iverdesign.Strings", "DisplayNameUrl",

typeof (IFusionCatalystWebSource))]
[Description ("CNL.ControlCenter.Driver.Jupiter.FC4000.Design.dr
iverdesign.Strings", "DescriptionUrl",
typeof (IFusionCatalystWebSource))]
[System.ComponentModel .DefaultValue (0)]
string Url
{
[OperationContract]
get;

2. Implement the property in the device class:

[OperationContract]
set;
}
}
public class FusionCatalystWebSource : FusionCatalystWebSourceBase,
IFusionCatalystWebSource
{
private string url;
public override string Url
{
get
{

return url;

_url = value;
//custom code here

%everbridge‘@
Device Public Methods

Listed below are the device Public Methods.

This method is called when a connectable device is Enabled in Control
Center or a connectable device has not connected (in other words, a
connectable device has not reported an Online state) during the time
period set by the Timeout property.

There are four basic elements typically present in Connect() method
Connect () implementation:

e Initialization and connection to the subsystem.

o Get thelist of relevant subsystem devices, and populate the relevant
Control Center child device Subscribe to events and alarms.

e Start monitoring the connection with the subsystem, if not
automatically provided by the subsystem API/SDK.

This method is called when a connectable device is Disabled in Control
Disconnect () [Center,implement resources design patterns here, and notin
Dispose ().

This method is only called when a device is deleted in Control Center (it
Dispose () is not called at any other time, even when Connection Manager is
shutting down).

Device Method Name Limitations
Method display names (Display Name property) cannot include characters:'-','/",'(', ")’
Methods with these characters cannot be called from Response Plans.

Device Methods Parameter Types
Device methods supports standard .NET types:

. int

e string

e double (shown in VRPs as Decimal)
e boolean

e« DateTime
The following types are not supported:

e short
e long
e byte
e uint

Complex, 64bit and custom types are not supported.
You must never expose native SDK types in Control Center.

%everbridge‘@

To pass a Control Center device (for example, the ISDK device Contract) as a method
parameter, the parameter of type Guid must be defined with Custom Attribute
[DeviceIdentifier].
bool StartDecoder (

[DevicelIdentifier (typeof (INextivaDecoder))]

Guid decoderIdentifier,

[DeviceIdentifier (typeof (INextivaCamera))]

Guid cameraldentifier);
To pass afile path as a parameter it is worth implementing access to a File Browser editor.
To do this, add the Editor Custom Attribute as follows:

[System.ComponentModel .Editor (typeof (FileBrowserEditor),
typeof (UITypeEditor))]

Device Method Return Types

Only basic .NET types are currently supported as connector device methods return types.
Toreturn a picture:

Possible solution: return byte[] then, assign the .Image property of an Image Control on a
Control Center GULI.

Special case: Herta driver: use a Plugin to decode a picture of Base64 format.

connector methods can return a List of basic .NET types. A Response Plan then can iterate
over the list items and process them.

Hide a Method From a Property Grid

Sometimes device methods need to be hidden from the Ul. Usually it is internal methods
(for example, for testing purposes) or obsolete methods which cannot be removed due to
possible Serialization problems for previously deployed connectors.

e Tohide a method on connector design surface, set Hide property to true on the
method shape.

e Tohide a method on connectors which do not have a connector design surface, add
the [System.ComponentModel .Browsable (false)] custom attribute to the
method definition in device interface class.

Provide a List of Items

Sometimes the connector needs to provide a list of certain items: layouts, devices, 3rd
party users and so on.

Implementation options:

1. The connector implements method GetItems () returning A C# List<>
(List<string>, List<int>, or List<supported basic type>).

2. As anoption, the connector can also implement an event ITtemsFound passinga
property of type List<>

3. Commissioner creates a custom GUI displaying the list in a Combobox, for
example.

%everbridge‘@

4. Inthe GUI create a VRP logic for OnLoad Event. In the event call the GetItems ()
on the server VRP Variable, then store the result in another VRP Variable, then use
the Iterate Collection shape and on every iteration call .Addltem to the Combobox.

Operator Actions

A connector method can be exposed as an operator action, which means this method is
available to the user in a context menu in the display GUI. In the example below, the
Integriti Door device has three operator actions:

e Lock Door
e Timed Access
e Unlock Door

To expose a method as an operator action:

1. Setthe Is Operator Action property to True

2. Chose a 16x16 unique icon to be shown for the Operator Action in the Context
Menus. Add the icon to Images\ folder of the driver project, assign Build Action to
Embedded Resource.

3. Assign the icon to the Action by setting custom attribute on the method. For
example,
[DisplayImage (DisplayImageSize.Imagel6x1l6,

@"CNL.ControlCenter.Driver.Hanwha.NVR.Images.AlarmInputOn.png",
typeof (IAlarmInputDevice))]

CAUTION: You cannot re-use the icons which were already used in this driver, for
Custom States.

If there is a requirement to provide different access levels to different actions, the
Category property should be assigned accordingly.

Connector Event Properties

You should avoid properties of type string (except the user-friendly text descriptions), and
instead use a strong typed approach if possible.

If an APl sends a string property, check what the possible values are, then report it as an
enum. (String properties with undefined values should not be used because you cannot
build any rules around them in Commissioning).

You must not report unparsed, raw data as an event property unless there is a special
need for it. This is because there will be no parsing at the Commissioning stage.

You must always report timestamps as DateTime in UTC format.
Usually there is no need to report an event timestamp as a separate property.

o Ifthe 3rd party provides the native timestamp, use the overload:
OnDoorForced(new DoorForcedEventArgs(this, nativeTimestampUtc))

e ifthe 3rd party doesn't provide a timestamp - use the overload:
OnDoorForced(new DoorForcedEventArgs(this)) (the event time will be
automatically assigned to DateTime.UtcNow)

%everbridge‘@

You must never expose native SDK types in Control Center.

If the subsystem reports null value in an expected field of type string, set the
corresponding event property to string.Empty: event fields which are null are hidden in
Control Center which may be misleading.

Raising Connector Events

Avoid caching/serializing 3rd party alarms or events in the connector unless thereis a
very good reason for it.

Avoid serializing 3rd party event ID counters (something like int _lastEventID)
Dealing with repeated alarms/events from a 3rd party system:

o Ifthe alarms have unique IDs, track (but do not serialize) the last received ID.

e Ifthe subsystem reports the Timestamp, you can filter out the events with
Timestamp older than the last received).

e Everbridge recommends that you cache the current devices' state and report the
Alarm only if the state changes.

NOTE: Normally if the subsystem has a problem reporting repeated events, it is a bugin
the subsystem and ideally should be fixed by the 3rd party.

Reporting Geographic Location

There are three ISDK Interfaces available:

1. IGeospatialAwareEvent toraise ageo-aware event to update dots onamap

(now deprecated).
2. ITrackableGeospatialAwareEvent. Thisisanextended version of

IGeospatialAwareEvent which has Trackld on it. Always use this instead of
IGeospatialAwareEvent.

3. IGeoSpatialTrackingtomake aControl Center device trackable (see ISS
demo driver).

CAUTION: Wherever you implement IGeospatialAware Interface, you must
implement and assign the member: int SpatialReferenceldentifier (asdefined by
spacialreference.org). Otherwise, Control Center does not plot the reported coordinates
on the map.

o Add aproperty Spatial Reference Identfier to device Server Contract and set a
Description: “A unique value used to unambiguously identify projected,
unprojected, and local spatial coordinate system definitions.” Default value - 4326

e AssignthisIDto SpatialReferencelIdentifier propertyof any event
implementing IGeospatialAware

%everbridge‘@
Exposing ENUMs

If a connector uses a custom enum type in its methods, events or properties, the type must
be exposed to Control Center. To do this, add a custom attribute
CNL.ControlCenter.Driver.Attributes.Description totheenum.

The following example uses CNL.ControlCenter.Driver.Attributes;

[Description ("Output State")]
public enum MxProOutputActivationState
{

Unknown = 0,

Activated,

Deactivated,

}

NOTE: There is currently no way to customize the values of the enum, so you need to
make sure they are self-explanatory.

Testing enums within Control Center:

1. Createanew VRP.

2. Create anew variable of type Enum.

3. Select the driver from the drop down list. The second drop-down field must list the
available enums.

Developing Video Connectors

You can configure a video control manager (VCM) in which to run your connectors and
display their Ul component (typically a control from the target system's SDK that shows
video).

As with other components that load connectors, a VCM's primary purpose is to isolate
other processes from third-party SDK/API instability and unreliability. It has a WCF
interface, allowing clients to tell which driver to load, go to playback, and so on. Calls go
back to the client control code on another WCF interface describing state changes.

é&everbridge“”

The timebar shown in playback mode is owned by the VCM.

Source Code:
VCM - Solution: CNL.IPSecurityCenter.Driver.DriverDependency

Client — Solution: CNL.IPSecurityCenter.WindowsClient
VideoControlManagerHostService — manages the VideoHostForm, reports notification to IPSC via Auditing Service, reports back to IPSC Client via WCF Service.

Windows Client

VCM Host Service

background of the
ST e

VideoHostForm
st i+ ¢ (R

Tile Layout

TileLayout\TileControl.vb TileLayout\TileControlvb

VideoControlHost WCF
Control manipulated by Server Client

1cAs

VideoHostForm, hosts

the actual driver’s Status Changed Callback CNLIPSecurityCenter ULControls Video TileControl

Video Control

Menu

Tile Control.cs — —
Solution: CNL.IPSecurityCenter.DriverDependency
Project: CNL.IPSecurityCenter.Ul.Common

(hosted on TileLayout\TileControl.vb)
Status Panel

Populating Buttons and Controls

e Presets listis populated by calling GetPresets () onacameradevice

implementing IPresetsDevice.
e PTZ controls are shown if the property PTZ Supported is set to true on the

displayed camera device (same for Preset controls).

VideoControlHost.cs
public bool PtzSupported

{
get
{
var ptzDevice = displayedDevice as IPtzDevice;
return PtzControl != null && (ptzDevice != null &&
ptzDevice.PtzSupported) ;
}
}
public bool PresetsEnabled
{
get
{
var ptzDevice = displayedDevice as IPresetsDevice;
return PtzPresetControl != null && (ptzDevice != null &&
ptzDevice.PresetsSupported) ;
}

}

é&everbridge@’

Video Operator Action buttons

Project: CNL.IPSecurityCenter.UI.Common
Class: TileControl.cs
public partial class TileControl : UserControl

{
public IList<ToolStripButton> OperatorActionButtons { get; private set;

public ToolStripButton AddOperatorActionButton(string text, string
toolTip, Image image, string methodName)
{
var button = AddToolStripButton (text, toolTip, image);
OperatorActionButtons.Add (button) ;
return button;

}

VCM Configuration

VCM configuration allows you to assign driver video controls to be hosted in various
VCMs.

1. From System Configuration, select Drivers & Extensions > VCM Configuration.

HE&E 2] o Bk S0 [@ install 8 Refresh| § VCM Configuration
: Folders b ' Overview - GeViScope Test Drivers & Extensions

Device Drivers | Add-ons
4 [Entire Enterprise

4 [My Organisation Device Driver Packages

[,3 Computers Mame Version
8 3 Data Connections A |B Installed Device Driver Packages

[,i Devices [|_B CHNL.IPSecurityCenter.Driver,Bosch,BYMS 1.0.697
[’_l_" Media [|_D CHL.IPSecurityCenter, Driver, Geutebruck, GCore 1.0.598

The default configuration is called VCM Per Driver. This means that each driver
with a Video Control runs in a separate VCM process (if you have 3 video
connectors and your Control Center client is set to use VCM Per Driver
configuration, the Control Center client runs 3 VCM processes, one for each
connector).

%everbridg&

2. Select Add. Create a new VCM configuration

File Edit Tools Window

4 (g Entire Enterprise
4 [3 My Organisation
(3 Computers
(-3 Data Connections @ VCM Configurations
() Devices .
G2 Media VCM Per Driver

4 [My Locations
4 l‘n}; Default g
3. Fillinthe VCM details:
a. Type aname for the VCM configuration.

b. Select Add Video Control Manager to add a new VCM to configuration.
c. Renamethe VCM or leave the default label VCM 1.
d

Default Configuration: VCM Per Driver

Assign driver Video Controls to this VCM by clicking 4 ,so all the
hosted Video Controls appear on the right-hand side:

W orcrven-ione T orves sorerson) vieo Controlanager contourstion I

Default Configuration: VCHM Per Driver

/1, There are unsaved changes. Any changes will be applied when the client is restarted.

‘ @ VCM Configurations

Label Mutti VEM

Custom Settings

+ Add Video Control Manager ﬁ Delete Video Control Manager

VCM 1 Label VCM 1
Avaliable Video Controls Selected Video Controls
[video Server » ™, Geutebruck GCare Camera
[Bosch BYMS Server [| ™ Onguard Camera
‘% Geutebruck GeViscope Camera (
«

104

%everbridge“”

4. Add & and configure more VCMs if needed. You can only save a VCM configuration

5.

once all the Video Controls are assigned. In other words, each Video Control is
hosted on at least one VCM. If you have not assigned a video control to a VCM
configuration, a Not all connector controls have been assigned a Video Control
Manager error message displays when you try to save.

Overview - Lenel f.’ Drivers & Extensions Q Video Control Manager Configuration -

Default Configuration: VCHM Per Driver

/1%, There are unsaved changes. Any changes will be applied when the client is restarted.

The new VCM Configuration now appears in the list:
r COwerview - Lenel rﬂ Drivers &Extensions/rﬁ Video Control Manager Configuration I

Default Configuration: VCM Per Driver

h I WCM Configurations

WVCM Per Driver Multi-VCM

5 § =

In System Configuration, double-click the Computers folder.

6. Select a Control Center client instance to configure.

everbridge’

7. From the VCM Configuration drop-down list, select a VCM configuration.

Overview - Computers | 5§ Drivers & Extensions ri Video Control Manager Conf}

Search in Computers

Label # Description
Execute command
| Alarm Types Server Execute command | Click to edit...
Hostname PC1340.cnluk com
S PC1340. cnluk. com Server with the TP hostname of PC1340.cnluk. com Alarm Interactivity Mode | Ful
Log Off
Connection Manager Server Manitor Power

Navigate Location
Program Path C:\Source Trunk \Solutions \CMHL.II

S PC1340.cnluk.com [Default] Connection Manager instance 'Default’ running on th...

Notification Server Restart Clent
Shutdown PC Click to edit...
3 PC1340. cnluk, com Server with the IP hostname of PC1340.crluk.com Start Client Click to edit
Stop Client
Rules Engine Server Unattended False
Use ion Lz False
S PC1340. cnluk. com Server with the IP hostname of PC1340.cluk. com \ el VCM Per Driver -
Security Server
a PC1340. cnluk. com Server with the IP hostname of PC1340.cnluk. com |VCM Per Driver
Mult-VCM
Server
S PC1340. cnluk. com Server Computer with the IP hostname of PC1340.
Video Export Server
PC1340. cnluk. com Server with the IP hostname of PC1340.crluk. com
Windows Client
g PC1340. cnluk. com Client Computer with the IP hostname of PC1340.CI

I- Speak

Video Tile Control

_Time bar

Teardrop £
Calendar control Play/Pause button Recording chunks

Speed slider

Playback state

106

é&everbridge“p

Basic Features of a CCTV Connector

Server-side

e Connection

o Device population (cameras, Inputs and Outputs for DVR driver, Recorders for
VMS driver)

Select Pre-set

e Alarm handling (Acknowledge, Close and so on.)
e Snapshot
e Switch outputs
« Events: motion detection, online states, alarms
Client-side
« Live Video
e Playback
o Seek
o Play, Pause
o Playback loop
e Switchcamera
e PTZ
e Pre-sets
e Snapshot
e Video Operator Actions
o Digital Zoom
o Focus

o 360 De-warp
o Audio In/Out
o Video resolution selector

e Lifetime Manager

%everbridge‘@

SDK Session Implementation

o SessionBase - common functionality: connect, disconnect, get devices

e CMSession - derived from SessionBase, implements server-side connector
features

e VCMSession - derived from SessionBase, implements client-side connector
features and a reference counter

o ExportSession - derived from SessionBase, implements video export

SessionBase

F 3

VCMSession CMSession ExportSession

Connector Patterns

Over a period of development, Everbridge have created a range of recommended patterns
to use in the development of third-party integrations.

Safe Timer

A Wrapper for the self-restarting timer safe from locking the timer thread when trying to
dispose the timer during a timer tick.

Typical usage is for a storage timer to auto-populate the Playback Time Bar

private SafeTimer storageTimer;

_storageTimer = new SafeTimer (true, PlaybackTimerInterval, "Timebar
Timer") ;

private void StartStorageTimer ()
{
if (! storageTimer.Enabled)
{
_storageTimer.Elapsed += StorageTimerTick;

_storageTimer.Enabled = true;

%everbridge‘@

}
private void StopStorageTimer ()

{

if (_storageTimer != null && storageTimer.Enabled)
{
_storageTimer.Elapsed -= StorageTimerTick;

_storageTimer.Enabled = false;

}

private void DisposeStorageTimer ()

{
StopStorageTimer () ;

Task.Run () =>

{
_storageTimer?.Dispose () ;

_storageTimer = null;

}

private void StorageTimerTick (object sender, EventArgs e)

{

//TODO required processing
}

Assembly Redirection

Dynamically load the 3rd party SDK DLLs in runtime subscribing
to AppDomain.CurrentDomain.AssemblyResolve. Thisisused intwo cases:

e Toautomatically load the latest version of the SDK to make the driver compatible
with multiple SDK versions and minimize the upgrade effort
e Toprevent copying the DLLs locally to the Bin\ folder of the Connection Manager

or VCM

%everbridge‘@

Used in drivers: March Networks, Genetec, Avigilon

The code using Assembly Redirection must be refactored so that the classes where the
Redirection occurs does not reference any SDK types. These must be offloaded by using
wrapper classes or Interfaces.

If the SDK is C++ based or a.NET wrapper around C++ libraries, the Assembly Redirection
does not work. However, the driver can try to load the SDK Assemblies directly from
the SDK install folder:

Assembly.LoadFrom (@"C:\GEVISOFT\GeViProcAPINET 4 0.d11");

Generic Pool

See drivers: Verint Nextiva, MxPro5

Generic Poller

This is useful in large scale systems where SDK does not provide users with connectivity
monitoring and you want to implement a polling thread. On sites with hundreds of
servers, it is not a good idea to run a thread per server as this leads to overload and thread
starvation. Instead, use the global poller which uses one thread for all the servers/devices.

Usage example:

private void Connect ()
{

var pollerl = GenericPoller<string>.Instance ("Connectivity");

var poller2 = GenericPoller<int>.Instance ("Cameras");

pollerl.PollingInterval = 1000;

poller2.PollingInterval = 300;

//Initialize connectivity poller

pollerl.AddItem (new PollItem<string>("1", PollConnectivity,
500)) ;

pollerl.AddItem(new PollItem<string>("2", PollConnectivity,
500)) ;

//Initialize cameras poller
poller2.AddItem (new PollItem<int> (1, PollCameras, 500));
poller2.AddItem(new PollItem<int> (2, PollCameras, 500));
//stop polling Camera 1
poller2.Removeltem(2) ;
//stop pollers
poller2.Dispose() ;
pollerl.Dispose() ;
}
private void PollConnectivity ()

{
}
private void PollCameras ()

{
}

%everbridge‘@

Playback FSM

Some video playback systems have a complex set of steps to move between video
playback modes based on previous state and potential failure mode. This Finite State
Machine class allows for the definition of these steps and correct step based on previous
known state. Example code is provided in Appendix A

Connection Monitors

Classes providing generic way of monitoring subsystem availability (by Ping, TCP,HTTP
or SDK).
e NetworkMonitor - part of the ISDK, Reference assembly:
CNL.ControlCenter.Driver.Utility.dll

e PingMonitor - part of the ISDK, Reference assembly:
CNL.ControlCenter.Driver.Utility.d1l1l

NOTE: Pingis generally deprecated as a means of connection monitoring as it
exposes an attack surface within the system. If used, it is recommended to have a
property on the server to enable the functionality and to default it to disabled.

e TCP Monitor - Useful class to monitor a standard TCP connection (should be used
if there is no SDK to provide you the connectivity).
o SDK-based Connection Monitor.

Network Socket Wrappers

TcpClientWrapper wrapsthestandard .NET TcpClient class. It connects and runs
background thread continuously reading from the socket.

You can configure Encoding. Encoding has events Connected, Disconnected,
DataReceived. Data is always received as byte[] and can be sent both as byte[] or string.

Example: Commend driver

Float Comparison

Comparisons of two float numbers can return invalid results, so it's better to compare this
way:

private const float ThresholdMin = 0.00001F;

public static bool Compare (float firstNumber, float secondNumber)

{

return Math.Abs (firstNumber - secondNumber) < ThresholdMin;

}

public static bool Compare (float firstNumber, int secondNumber)

{

return Math.Abs (firstNumber - secondNumber) < ThresholdMin;

}
Example: IndigoVision driver, FloatExtensions class

%everbridge‘@

Split Camel Case

If you need to provide a user-friendly description for an SDK enum type, you can use
Regex to convert the enum:

internal static class GuardallShortenedEventCodes

{

internal enum GuardallShortenedEventCode : byte

{
Headcount = 20,
CircuitAutocheckFail = 22,
DefaultPinsClear = 55,

}
public static string GetTypeString(this GuardallShortenedEventCode

eventCode)

{

switch (eventCode)

{

case GuardallShortenedEventCode.Headcount:
return "Number of activations of all circuits programmed

with the head count option while the panel was unset";
case GuardallShortenedEventCode.DefaultPinsClear:
return "Default PINs cleared";

default:
return SplitCamelCase (eventCode.ToString()) ;

}

}
public static string SplitCamelCase (string input)

{
return Regex.Replace (input, " ([A-Z])", " s1",

RegexOptions.Compiled) .Trim() ;
}
}

Device Population

When developing a new connector, you must remember that although your development
environment may have only a few devices to work against, your production environment
may have many hundreds of devices/sensors. This can lead to the connect/population of
devices taking many minutes and possibly causing Connection Manager to fail the device.

A suggested solution is to pass the population of devices onto a background task, leave it
to complete and indicate the device as 'online'. This has some implications.

e Ifnoerror handling/checking is implemented in the background task, then device
population can fail with no indication of the failure. In other words, not all devices

are created/populated.

%everbridge‘@

e No checking of the status of background task means:

o ifthedevice is taken 'off-line' the background device creation task
continues.

o changing the device state rapidly (such as, pressing F12 multiple times) can
cause multiple background device creation tasks to be active. This can lead
to duplication of devices in the system.

Device Patters Example Code

In the declarations for the device server, add the following:

[NonSerialized]

private CancellationTokenSource tokenSource;
[NonSerialized]

private CancellationToken cancelToken;

[...]

/// <summary>

/// Connects to the physical device.

/// </summary>

[SuppressMessage ("Microsoft.Design",
"CA1031:DoNotCatchGeneralExceptionTypes")]
public override void Connect ()

{

try

{
CheckDisposed() ;
var username = DeviceDefaults.DefaultUsername (this) ;
var port = DeviceDefaults.DefaultPort (this);

[ooo]

log.InfoFormat (CultureInfo.CurrentCulture, ErrorMessages.ConnectingText,
username, IP, port);
lock (lockInstance)
{
Disconnect () ;
//
// Should never get to this state
// but just in case
//
if (tokenSource != null)
{
tokenSource.Cancel () ;
tokenSource.Dispose () ;
}
tokenSource = new CancellationTokenSource () ;
cancelToken = tokenSource.Token;
if (string.IsNullOrEmpty (IP))
{
throw new
ArgumentException (ErrorMessages.IPAddressNotSpecified) ;

}

%everbridge‘@

log.DebugFormat (CultureInfo.InvariantCulture,

LastEventReceived) ;
if (RetrieveOfflineEvents &&

(!string.IsNullOrEmpty (LastEventReceived)))
{

"Last Event Received: {0}",

Task.Run(() => GetOfflineEvents (cancelToken), cancelToken) ;

}

Task.Run(() => PopulateDevices (cancelToken), cancelToken) ;

}

catch (DeviceException ex)

{
log.Error (ex.Message, ex);
OnStateChanged (DeviceState.Failed, ex.FullMessage) ;
Disconnect () ;

}

catch (Exception ex)

{

log.Error (ErrorMessages.DeviceConnectionFailed, ex);
OnStateChanged (DeviceState.Failed,
ErrorMessages.DeviceConnectionFailed + Environment.NewLine + ex.Message) ;

Disconnect () ;

}

}

/// <summary>

/// Disconnects from the physical device.

/// </summary>

public override void Disconnect ()

{
PropertyChanged?.Invoke (this, new

PropertyChangedEventArgs (string.Empty)) ;

CheckDisposed() ;
log.InfoFormat (CultureInfo.CurrentCulture, ErrorMessages.Disconnecting,

DeviceDefaults.DefaultUsername (this), IP, DeviceDefaults.DefaultPort (this)):;

[...]

lock (lockInstance)

{
//

// Cancel any running background task

//

tokenSource?.Cancel () ;

//

// and destroy the token source/token from the system
//

tokenSource?.Dispose () ;

tokenSource = null;

log.InfoFormat (CultureInfo.CurrentCulture, ErrorMessages.Disconnected,
DeviceDefaults.DefaultUsername (this), IP, DeviceDefaults.DefaultPort (this)):;

}
/// <summary>
/// Populates the devices connected to the server.

%everbridge‘@

/// </summary>
private void PopulateDevices (CancellationToken token)
{
try
{
//
// Was cancellation already requested?
//
if (token.IsCancellationRequested)
{
log.InfoFormat ("Task {0} was cancelled before waiting for
network data.", MethodBase.GetCurrentMethod () .Name) ;
token.ThrowIfCancellationRequested() ;
}
//
// 1f you split the population into additional methods remember to
hand the token through to those and check
// at each stage for termination so as to terminate the task as
quickly as possible, otherwise

//

// Foreach device

// is cancelation requested?
// break out the task

// else

// add device

catch (Exception ex)
{
//
// report something here
//
[...]

}

Connector Testing

To test a connector, you must think about testing:

e aconnector can be successfully installed and uninstalled.
e aconnector can successfully connect to a subsystem.

o alltherequired connector features.

o all operator actions can be carried out successfully.

Connector Testing Prerequisites

Before beginning your testing, complete the following prerequisites.

1. Install Control Center client and server.
2. Check the requirements for the connector.
3. Check the video subsystem, for example, check hardware manuals.

%everbridge‘@

4. Setup the subsystem to test all the required features.
o Thesubsystem is configured to raise all the events supported in the
connectors.
o Forvideo connectors:

= ithas atleast one PTZ camera with pre-configured presets.
= it has at least 3 cameras configured:

= onecamerarecording continuously.
= onecamerarecording on motion or another event.
= onecamerathat does not have any recordings.

5. Study the RDIN. Check the following sections: Installation, and Known Issues &
Limitations.

6. Install all the connector prerequisites as described in the RDIN.

7. Install the SDK on relevant machines as described in the RDIN.

8. Install the connector in Control Center.

Connections and Online States

To make a connector connect to a subsystem:

1. Add aserver device representing a subsystem server/service/panel.
2. Set the connection properties.
3. Enable the device.

If the connection is successful, the device goes to a Connecting state, and then to an
Online state.

if the connector cannot connect, the device goes to a Failed state and the State
Description explains the reason for the failure.

Connection properties may be slightly different from connector to connector, but a
typical set of properties include:

e IP-IP address or host name of the subsystem.

e Port - (for TCP-based protocol/SDK). This can be set to a valid TCP port. It can also
be set to O. In this case, the connector should automatically use a default value
(such as 80 or 443 or some system-specific port).

e Username

e Password

o Timeout - (1 minute by default): This is the period of time the Connection Manager
is waiting for a device to go to an Online state after it's Enabled. If the device does
not go Online in time, Connection Manager sets the device to a Failed state.

o Retry Interval - (1 minute by default): after the device is in Failed state, Connection
Manager schedules automatic re-connection after the amount of time set in Retry
Interval.

Aeverbridge‘@

Windows Credentials/Single Sign On

Some subsystems have an option to use Windows credentials to connect. If several
connection options are available, the driver should have a property called Authentication
Mode (or similar) so a user can select an authentication type from the list.

Lonnection Letalls
Authentication Mode JEEE] e
IP

Mone

Password
Part Windows
I Retry Interval WindowsCredentials

& Timeout 00030

If Windows credentials are used, the Username property is typically in the
format Domain/ user or user@domain.

Lifetime Manager

The Lifetime Manager is used in some CCTV drivers to allow faster camera display.
It should only affect the first camera displayed after the Control Center client starts up.

To make the feature work, the main server device has a property, typically, a boolean
property called Auto Connect, controlling whether the Control Center clienttries to
connect to this server on start up.

Test Scenario Expected Behaviour Comments

e Control Center client

starts up.
o Subsystemserveris The VCMautomatically . o e
available. connects to the subsystem

o Auto Connect property server. from VCM logs.

is set to True on the
server device.

e Continued:draga

camera device to The camerais displayed

within 1-2 seconds.

Display Area.
e Control Center client

starts up. The VCM does not This can be confirmed
 Auto Connect property ' connect to the subsystem fromVCM |

is set to False on the server on start up. rom 08S-

server device.

The camera is displayed

e Continued:draga within 10-20 seconds
camera device to (depends on the
Display Area. subsystem and the

network speed).

%everbridge‘@

¢ Control Center client
startsup

e Theserver deviceis
Disabled in Control
Center.

e Continued:draga
cameradevice to
Display Area.

e Control Center client
starts up.

e Server deviceis
Disabled in Control
Center.

e Enabletheserver
device.

e Control Center Client
starts up.

e Subsystem serveris
unavailable or
connection details are
invalid in the server
device.

e Auto Connect property
isset to True on the
server device.

e Control Center client
starts up, subsystem
server is available.

e Auto Connect property
isset to True on the
server device.

« Waituntil the VCM has
connected to the
subsystem.

e Disconnect the
subsystem from
network, then re-
connect the network.

e Wait until the server

The VCM does not
connect to the subsystem
server on start up.

The camerais displayed
within 10-20 seconds
(depends on the
subsystem and the
network speed).

The VCM does not
connect to the subsystem
server on start up. It also
does not try to connect
when the server device is
Enabled.

The VCM automatically
attempts to connect to the
subsystem server. An
optionis to allow Lifetime
Manager to implement a
retry mechanism, similar
to Connection Manager
re-try mechanism.

The VCM should
automatically re-connect
to the subsystem when it
becomes available. When
the subsystem is back
online, the camera camera
should be displayed within
1-2 seconds.

This can be confirmed
from VCM logs.

This can be confirmed
from VCM logs.

There should be a limited
number of re-connect
attempts controlled by a
server device property
Maximum Reconnects.

%everbridge‘@

device returns to
Online state.

e Dragacameradeviceto
Display Area.

Start or re-start Control
Center client,

Auto Connect property is
set to True on the server

device, The video tile will stay in

Connecting state until . . .
VCM has finished logein This scenario occurred in
88INE | cBK with DvTel Latitude

in to the subsystem and
the video is displayed
(simulate the situation successfully.

where Lifetime Manager is

still connecting to the

subsystem, where the

camera is being displayed).

Display the camera device
after the client has started

up as soon as possible driver.

All of the above behavior
should be tested with
multiple VCMs configured.

Device Population

For most connectors which support child devices, a server device is added manually. Once
the device is Enabled, it connects to a subsystem and goes to Online state.

There are two basic options:

1. Aconnector queries the subsystem for available devices, then the child devices are
populated automatically in Control Center.

2. Ifthereis noway to query the subsystem, the device configuration is supplied
manually by setting a server device property as a path to a configuration CSV file or
a custom window, where configuration can be set up manually.

Typical Scenarios for Device Population

Test Scenario Expected Behavior Comments
First-time After connecting to the subsystem, the devices goes to

connection, create a Online state. The device then then goes to Populating

new connectable Devices custom state, while populating the child devices.

parent (server) device | Finally, the device goes to the Online state, once all the
and Enable it. child devices are populated.

%everbridge‘@

After its child devices
are already populated
and in Disabled state,
enable parent (server)
device.

Enable parent (server)
device after its child
devices are already
populated and are
Enabled in Control
Center.

After connected to the
subsystem, delete a
child device in Control
Center, then re-enable
the parent device.

Run the Sync Devices
(in other words,
Update Devices)
parent device method
after

successfully connected
to the server.

Runthe Sync Devices
(in other words,
Update Devices)
parent device method
multiple times, quickly.

Quickly, disable and
enable parent device
multiple times.

Test cancelling device
population

by enabling a parent
device, waiting for the
connector to start
device population, and
then disable the device

Same as above.

Same as above. If some of the child devices can populate
devices as well

(for example Panels which in turn can populate I/Os and
readers) these will be also populated if can successfully
get a list of devices - the new devices

The deleted child device should be re-populated in
Disabled state.

The connector should query the subsystem and re-sync.

The child devices should:
If currently not connected
o Populate any missing Control Center devicesin tg the server, the method

Disabled state, must log an error and
« setanydevices that were deleted in the return False.

subsystem to Failed state with description similar

to Device not found.

The connector must not allow more than one device
population at a time. If the connector is already
populating devices the repeated method call should
result in a warning log message and return False. The
original device population must complete uninterrupted.

As above but allow only one device population at a time.

Device population must stop almost immediately and the
parent server device goes to Disabled state.

é&everbridge@’

while still populating
the devices.

Notes:

« All new devices are populated in Disabled state.

o Forall video camera devices, the connector should automatically detect whether a
camera supports PTZ and set PTZ Supported and Presets Supported properties to
the correct value.

Re-adding Child Devices Manually After Deletion

You should test manually reading child devices after deletion from a parent device.

1. Right-click server device and select Manage Interfaces to start Device
Connections wizard.

Select the parent device, and select the interface of the previously deleted camera.
Select Add to connect the server device to the new camera device by linking the
two selected interfaces.

4. Select Finish to close the wizard.

w N

LeLLL

deoq0e0000Q000e £ 7

@ Ol Server 3 Aea G781 Aen Q021 Ve Otont

Device Properties

To view the properties of a connector, in System Configuration, select a device. The
Driver Properties pane displays. Properties control the behavior of a device. Properties
on a server device can affect the behavior of the whole driver.

Device Methods

Methods are commands/actions available for a device. Device methods have to be
asynchronous. Any returned data has to be raised in a separate event. Device methods
return a unique ID. This is included in any event raised as a result of the method being
invoked.

Methods can have parameters of various types and return a value which is typically a
boolean variable. In other words, True if the command was successful, False otherwise.

é&everbridge“g

If acommand such as Open Door returns True it means the command was successfully
sent to the subsystem. It does not mean the command was executed, in other words, the
door is open. If the method returns False, it means the command could not be sent to the

subsystem.

Invoke Device Methods
1.

In the Properties pane in the Actions category, select the method. If the method

has more than one parameters, a dialog displays and you must supply the

parameter values.

2. RunaResponse Plan with a Script shape. To check the return value, create a
variable in a visual response plan (VRP) that represents the value, and assign the
method result to the variable. For example, call Select Preset method on a camera
device passing in the Preset Number. For this VRP, you need to create the variables

camera and PresetNumber.

| SelectPreset ‘Variables

Ny.PageVariahles.camera. [Select Preset] {My.PageVariahles.PresetNunber) =

(2l %566
Page
=P camers @@
5 Geutebruck GCore Camera Fequre:
L £ =| PreseiNumber @@
ol Seript] System
‘i © ;;ﬂ Curent Server |3

In this example, call Open Digital Output method on an output device and print the

return value.

| TurnOutputon : Variables

Device Events

=
[X508
Pag
[@@
] et LSS
1 ik 8o
Success 233
Seript B
i Sysen
‘ ¥ S Action ‘”3 Conent Serv _QQ@
LJ Seript Editor x
Fuccess = Ny.PageVariables.Output.[COpen Digital Cutput] () =
Result = Success.ToStringi)

Every device can raise events. Events are first reported by the Connection Manager
service and then sent to the Rules Engine service to trigger response plans, if required.

Every device has one standard event, Device State Changed.

é&everbridge“p

To see the available device events, select a device in System Configuration, and expand
the Events.

o e

—;; IP Camera 3 Encoder 2

= % Events
' Device State Changed
Wy Motion
' Preset Selected

Creating a VRP Triggered on Device Event

To test a device event you can create a VRP that is triggered when an event is raised.

1.
2.
3.

4,
5. (Optional) Goto System Configuration > Computers folder. Double-click Rules

Right-click on event and select React to Event > Run response plan > Create New

response plan.
Navigate to Services and drag the Connection Manager service while testing the

events and the response plan.

Verify the events are raised by the driver by going to System Configuration >
Services folder. Double-click Connection Manager service to open the Event
Viewer.

Make sure the VRP created for the event is triggered.

Engine Server to open the Event Viewer.

Event Properties

Event properties support basic types; DateTime, Integer, Double, String, custom Enum,
Boolean.

Simulating Events

Control Center allows you to simulate connector events raised without any subsystem
activity.

1. Goto System Configuration.
2. Right-click on an event and select Simulate Event.

3.

If the event has custom properties, fill in the property values and select OK.

= [!1 Geutebrudk GCore Server 1 Ou

[_/.s:f Back Import...
=
[Cash Refresh

[_/; Cust [/; Simulate Event
React To Event

[_/_;.v'f Event State Changed Ge

é&everbridge@’

Device Custom States

In addition to standard online states (Online, Disabled, Offline, Failed, Warning), a device
can implement one or more additional states called custom states. Typically, a custom
state displays a description in addition to the icon.

Locations -
Default

4 [GCore

4 & Building 01
,-» Output 001
. - Qutput 002
. Output 003

T ANFR

T C51_East side

Label » Description Type » Last Modified Extra Information
Geutebruck GCore Digital Output

,/:' Qutput 001 GCore Digital Qutput Geutebruck GCore Digital ... 4/23/2019 9:50:36 AM Open

,/:' Qutput 002 GCore Digital Qutput Geutebruck GCore Digital ... 4/23/2019 9:50:36 AM Closed

,/I; Qutput 003 GCore Digital Qutput Geutebruck GCore Digital ... 4/23/2019 9:50:36 AM Unknown

More examples:
« 'B omitted state

. B Abnormal state
. @& Unset state

Typical Usage of Custom States

You can represent a current state of a relay output or a logical output device. Typically,
the available states are On and Off. Where the current state cannot be polled by a
connector, the device stays in an Unknown custom state until the first state update from
the subsystem.

There are some states that it might be important for a customer to see, track and control.
These are frequently implemented as custom states.

« Show current device faults. If there are multiple faults, the state description lists
them all, for example, Door fault, Battery low and so on. If thisis a compound
device, for example, an ACS logical door which can have multiple readers, inputs
and a door lock, the state description lists this. For example, Reader IN: disabled,
Lock fault.

e Populating custom state can be used to show a user that the connector is busy
populating child devices. This is applicable for connectors with child devices
released for large scale projects where device population can take significant time.

%everbridg&

o States of devices representing logical subsystem entities like Zones, Areas or

Groups that can be locked, unlocked, set/armed, unset/disarmed,

disabled/omitted/inhibited.
Live Video

When you select a video, the video should be displayed, in a tile layout, for example, single
tile, multiple tile, full screen or minimized, or in a sequence, using a short cut, or optical
zoom and digital zoom. You also need to check that when you unplug the device, if it goes
to offline state and if the video still plays. Finally, if you are able to play the video using

a VRP.
Presets

The Preset Selector menu is available from the Tile menu.

Systern Man
* =9,

- P =

© SetPreset
© Delete Preset

Preset 1
Preset 2
Preset 3
Preset 4
Preset 5
Preset 6
Preset 7
Preset &
Preset 9
Preset 10
Roof

The same menu is available from System Configuration and selecting a camera device.

You can use the Select Preset method from the Properties pane.

g e e ey e
* G-Cam/ESD-3270 on the left corner Our high-en

“f_% G-CamESD-3401 on the right cormer Our high-end
“f_% G-Cam/PTHC-1210_East Side 5 Qur high-end
“"% GEIJTEBRUECK Acrial View Qur high-end
T'% K508 TopBC-2113 rear Qur high-end
T'% Sydney Office Roller Door South Qur high-end
T'% TopBC-2118 shipping Qur high-end
T'% TopBC-21828 new building 2 Qur high-end
"_% TopBC-2188 new building 1 Cur high-end
"_% Topline AMPR. overview parking lot ~ Our high-end
"_% Topline AMPR. sensor Cur high-end

Geutebruck GCore Digital Input

G-Cam/ESD-3270 on the left comer

Parent Server

GCore Server 1

Rate Limit

0

Mumber of Presets

Synchronization loss ¢

250

Presets Supported

True

PTZ Supported

Aeverbridge‘@

g~
CCIrr .

M

Preaat 1 w
T | |
Prosai 2 |
Presetl 3

Proat &

Prosat §

Presetl

Preget; 7

Prosat &

Preset 5

Preset 10

Ficed

Presel Hussbwer

Thoe b of e praset & maorve e dervice b

o Carnel

Note: Control Center ISDK and VCM have the following known limitations:

It only allows to set Presets supported = True or False. In other words, if Presets
are supported, Control Center assumes that presets can be Set (created/saved),
Renamed, and Deleted. If the actual subsystem does not support it, the Delete
Preset dialog still appears, but when you select OK to delete, nothing happens.
Although, the driver might emulate the preset deletion overriding the SDK
behavior.

Even though the ISDK provides 2 independent boolean properties, Preset
Supported and PTZ Supported, Preset controls only appear on a video tile if both
properties are set to True. This makes the Preset Supported property obsolete.
The Preset GUl is inconsistent. The Preset Delete dialog shows only Preset
Number, whereas the drop-down menu shows only Preset Labels. Set Preset
dialog shows both Preset Number and Preset Label.

Playback

You can playback the video from a camera in Control Center. Drag a camera device into a
Display Area. ATile Layout is automatically generated to host the video. The camera is
displayed in Live Video mode.

Select Playback on the tile menu to switch to Playback mode.

%everbridge@’

The tile menu has the following controls.

Time bar

Teardrop

Catendarcontrol | Play/Pause button™. Recording chunks

Playback state Speed slider

You can use the calendar control to seek playback for a particular date and time. Select a
date and time and select Go.

Playback Loop

Everbridge recommends that you validate playback loops in time zones other than UTC+-
0. Times shall always be described in UTC in response plans and always in LocalTime in the
ul.

o Start playback Loop Using the mouse, mark a region on the timebar where you
want to define a loop. When you release the mouse button, a context menu
displays. Select Start Video Loop. The loop is marked in the timebar.

e Stop playback Loop Riht-click the Loop marker in the timebar. In the context
menu, select Stop Video Loop.

127

é&everbridge“p

« Display acamerain Playback mode from a VRP Create or import a VRP that
displays a camerain Playback mode.

You can modify a VRP to enable you to test playback loops. Double-click a VRP to
edit it in the VRP Editor.

o Todisplay the camerain Playing mode, select Set Tile Contents shape and
set the Paused property to False.

o Todisplay the camerain Paused mode, select Set Tile Contents shape and
set the Paused property to True.

Timebar Events

Video connectors can optionally make camera device events to appear on a timebar.

TR A hewts

The timebar events can be configured to:

e belogged totimebar.
e provide a user with an option to select or deselect an event type to appear on a
timebar.

%everbridg&

If an events appearance on a timebar is optional, these events can be configured by
clicking the Timebar Events property on a camera device in the Properties panein
System Configuration.

Label

T, axis-00408c788d 1c
2 axis-233D--10-40-22-3

‘F% Pelco Spectra Pro PTZ

American Dynamics VideoEdge Camera

"F% Axis-P1425-E-10-40-22-4

Search in AD

+ Description

Border Color

[1 Transparent

One of the fastest and most powerful i

Created

3/28/2019 10:35 AM

One of the fastest and most powerful i

Description

One of the fastest and

COne of the fastest and most powerful Iy

Environment

Production

One of the fastest and most powerful I lcon

CML.IP SecurityCenter

7 7 Timebar Events Selector

¥ Alert Notification
User Alarm

Label Changed

Cwner

System

- O >

Vigible Objects

Input Category

Partition Group

Security Settings

Ok Cancel

Summary of VRPs for Testing Playback

Test

Show camera in Playback
mode (playing).

Show camera in Playback
mode (paused).

Show camera in Playback
Loop mode.

Show multiple camerasin
Playback.

Check memory leaks
while re-displaying Tile
Layout.

VRP Name

Display Camera Feed
Playback.xml

Display Camera Feed
Playback Paused.xml

Display Camera Feed
Playback Loop.xml

Display Multiple Cameras in
Playback Mode.xml

TileLayoutReload3.xml

Details

Create afolder in Control Center and
copy cameradevices to the folder. The
Folder is set via the

DeviceFolder variable.

All the cameras will try to play from the
same time, set by StartDate Variable.

You need to find or create a Tile
Layout (2x2 or bigger) to be assigned
to tilelay VRP variable.

é&everbridge@’

Video Operator Actions

You can test the operator actions that can be performed on video. Optional video features
are available as additional controls on the video tile menu.

Digital Zoom

To test digital zoom:

Digital Zoom button must appear in the video tile

To switch Digital Zoom on, press the Digital Zoom button. A Digital Zoom icon
appears in the lower left corner of the tile and the mouse cursor changes to a cross
(+).

To switch Digital Zoom off, press the Digital Zoom button. The Digital Zoom icon
disappears and the mouse cursor changes back to a default cursor.

Digital Zoom can be supported for both Live and Playback modes:

o When Digital Zoom is on in Live mode and a user switches the tile to
Playback, the Digital Zoom is automatically disabled.

o When Digital Zoom is on in Playback mode and a user switches the tile to
Playback, the Digital Zoom is automatically disabled.

Video Export

To schedule a new video export Job:

cUphwNE

© N

Start Video Export Wizard.

In Control Center client, go to System > Video Export Scheduler
Select New > Next and assign a name for your video export job.
Select Next > Next and choose a camera device to export from.
Select > to move the selected camera to the right pane.

Select Next.

WMdoo Scurce Sdection
i Specty he video Sevices and. o lozatons lor wheh you wieh 1 expon fom e
1
| Awalable Locssors and Camerse Selected Tasks
i T e s o Bl 7[P Corers 2PT2 I
| # Dol - }
| |

4
< Back Yoot > Cancel

Select a start time and end time in local time (not in UTC).

Select Path to pick the folder to save the exported files to. The folder on Video
Export Service machine is used/created.

Select Next in Summary page.

%everbridge@’

10.Select Submit to close the Wizard. A new Job appears in the Export Manager.

m Completed Configuration Settings Defer Locations

= I T

Label Estimated Completed Time Requested Time 1! Last Modified Status
% expl 3/6/2019 12:20:04 PM 3/6/20189 12:20:00 PM 3/6/2019 12:20:02 PM In Progress (0% CGomplete)

11. Double-click on the task to show the export task progress and information.
12.1f an export task fails, an error message appears in the Message column.

Jobs | Queued | Completed onfiguration Setings " Defer Locations Job 'exp1" |

Request Time 3/6/2019 1220:00 PM

Description RequestUser Administator
Save Path ~\Exporte Estimated Completed Time EAE R e 2Ll l]
Actual Start Time 3/6/2019 1220:02 PM

Actual End Time
Pronty Normal

Camera 1 Status Scheduled Time Actual Start Time Actual End Time Message
IP Camera 2 PTZ Queued 3/6/2019 12:.22.11 3/6/2019 12:20.02 PM 3/6/2019 1222111 Retry pending (Count: 1). No suitable codec found

13. After an export task fails after 3 retries, the parent export job fails as well. You can
r etry or cancel export tasks.

There are some known issues with video exports.

o Progress of export task is not shown when connectors report it (raising
OnProgress() event).

e When ataskis cancelled, <NULL> is displayed in the Wizard.

e Theexport file pathis created on the Control Center client machine instead of the
Video Export Service machine.

You can configure a Video Export Service to run on a separate Machine, rather thanon a
Control Center server machine.

For this test you need 3 separate machines:

e Control Center client
e Control Center server
e Control Center VES

Do the following:

1. Run Control Center server installer.
2. Select Custom installation
3. Select only Video Export service to install:
o enter the same service credentials used for other services on Control
Center server machine.
o enter the same SQL Database Instance as the other services on Control
Center server machine.

4. Onthe VES machine, stop the VES if running.

131

é&everbridge“p

5. Addthe following: <add key="CoreServerHostname" value="Control
Center server machine host name"/> tothe C:\Program Files
(x86) \Everbridge\IPSecurityCenter\IPSecurityCenter Video
Export
Service\CNL.IPSecurityCenter.VideoExport.WindowsService.exe
.config.

6. InControl Center client, navigate to System Configuration > Global Settings >
Video Export.

7. Add aconnection to the new VES, providing a web service URL: net . tcp:// VES
machine host name:7333/VideoExportService

v Global Settings

R Video Export

Wideo Export Servers
Configure wieo export services. Dedave active Video Export services fior fadover,

et bep: //TPSC-TSR 204, CHLUKDEV. com: 7333 Vickeok
€.0. el KD Rompter_ans e 808 [MdeoExpor Service
net.tcp:/IPSC-TSR2 14, CNLUKDEN. com: 7333 Videck T

Oown

Video ©pot

8. Follow thedriver RDIN Installation section to install the subsystem SDK on the
VES machine, if needed.

9. Copy \\ Control Center Server
hostname\c$\ProgramData\Everbridge\ControlCenter\Packagesto
C:\ProgramData\Everbridge\ControlCenter. Thisissothedriver can
load on the VES machine.

10.Start the Video Export service on VES machine.

Test SDK Sessions/Connections Release

On the server side, when Connection Manager is stopped and/or server device is
Disabled, the connector is expected to:

e close all TCP connections
e close any SDK connections
e successfully log out from the subsystem releasing any 3rd party licenses if used.

On client side (video drivers), when all the video feeds are closed in Control Center client,
the connector is expected to

e closeall TCP connections
e close any SDK connections
e successfully log out from the subsystem releasing any 3rd party licenses if used.

%everbridge‘@

This can be tested in 2 ways:

1. Run netstat -a-b command on native server Command Prompt to show all TCP
connections.

2. Check there are no established TCP/UDP connections with Connection Manager
machine. Tip: if there are too many connections, you can use filtering: netstat -a -b |
findstr "10.*"

3. Use native software to show existing or recent SDK sessions, license counter or
logs showing Control Center logging in/out.

Memory Leaks Detection

You can use the following software tools for memory tracking.

e PerfMon Windows tool. Set Process > Private Bytes counter for the tracked
process.

e ANTS Memory Profiler Attach to the requested process. Take one Snapshot and
then take several more snapshots during the test. Compare the memory
consumption, available here: \\fileserver\software-library\Internal
Software\RedGate\DotNetDeveloperBundle

« Loupe Desktop After the tested period, crash/stop the process. In Loupe, go to
Local Sessions > Control Center, and double-click the recently finished session.
Check the memory graph.

e Process Explorer

o Task Manager Visually check the RAM level (Memory (private working set)
column). This is the least preferred tool as there is no way to record or display the
memory consumption during the time period. You should only use this for short
running tests.

Uninstall Connectors

For some test scenarios, such as connector version upgrade, it may be necessary to
remove the current version of the connector from Control Center.

1. InSystem Configuration, delete all devices of the connector. If there are any
dependencies preventing the devices being deleted (such as VRPs, Tile Layouts,
Sequences using the devices), remove the dependencies and try deleting the
devices again.
Close all instances of Control Center client.
On every machine that has Control Center client installed, delete the connector
from the following folders:
o C:\ProgramData\Everbridge\IPSecurityCenter\Packages
o C:\ProgramData\Everbridge\IPSecurityCenter\Extracted
Packages
o C:\ProgramData\Everbridge\IPSecurityCenter\Windows
Client\Packages
o C:\ProgramData\Everbridge\IPSecurityCenter\Windows
Client\Extracted Package

wnN

%everbridge‘@

4. On Control Center server, stop the following services:

o Control Center Connection Manager Service hosting the driver devices

o Control Center Server
5. On Control Center server machine, delete the connector from folders:

o C:\ProgramData\Everbridge\IPSecurityCenter\Packages
o C:\ProgramData\Everbridge\IPSecurityCenter\Extracted

Packages

o C:\ProgramData\Everbridge\IPSecurityCenter\Connection

Manager\ CM name\Packages

o C:\ProgramData\Everbridge\IPSecurityCenter\Connection

Manager\ CM name\Extracted

6. On Control Center server machine, re-start the following services:

o Control Center Connection Manager Service hosting the driver devices

o Control Center Server

7. Restart the Control Center client. The connector package should not appear in

System Configuration > Drivers & Extensions.

All Connectors - Expected Functionality

The expected functionality of drivers may depend on the particular subsystem. The

following table describes some standard test scenarios.

Test Scenario Comment Behavior 1 Behavior 2

If the connector
populates device
synchronously (as
implemented in most

h Most connectors:

Disconnection connec;ors), t et. (I\/!arch Network gorr)mand device populates
while the cortmec lonmay time | driver): after logging in to all devices and only
connector is out. subsystem the connector ' ha does the
populating child If the device gOES inme briefly to stop server device go to
devices population is CMtimer and prevent an Online state.
(only relevant asynchronous, there | connection tlmgout, the.n This canresultin
for connectors | 2Y be . goes to Populating Devices Timeout. Re-
with child synchronization Custom sta.te to show the connect éttem ts

. problems, if user user the driver has not 8 mp
devices) will end up with

decides to re-enable finished initializing.
server device or

connection is broken

while devices are

being populated.

dead locking CM.

Behavior 3

Some
connectors:
server device
goes Online
immediately
after loggingin to
subsystem and
then

populates device
sinthe
background.

No timeoutsin
this case, but the
connector must
be able to stop
populating
devices and
continue the next
connection
attempt.

Note: Best

%everbridge‘@

(EAL driver) When
Unlocked/Locked event in
Rules Engine there are

If the connector has three visible events

the optionto givean ¢ DoorlLockedEvent,

Offset is not offset tothe server, |* CustomChangedEvent,

displayed on

) it will not be e DeviceStateChanged.
specificevents | . .
displayed in all of the | The DoorLockedEvent and
events. the CustomChangedEvent
would show the set offset.
DeviceStateChanged

would show the local time.

Video Connectors - Expected Functionality

practice is to
populate devices
in one call which
isthen queued in
CM. You must
make sure this
application is
atomic.

This behavior is to
be expected from
all connectors.

The expected functionality of video connectors may vary slightly depending on the
particular subsystem. The following table describes test scenarios to test behavior

that may be different from standard.

Test Scenario Comment Behavior 1 Behavior 2
. Some subsystems
Disconnecta . . Y
display a'no
camerafrom . i
video'iconon
the network L.
their video .
(or, for Display a standard
controls, some "~ e . .
analogue Video signal lost

show a black
cameras error message on

. ., screen,some .)
disconnect it T the video tile.
. cause avideo
directly from

freeze.
the server
hardware) Aswe want a

standard

Behavior 3

Display a
camera while
parent video
server is
disconnected

(the server
deviceisin
Failed state)

Restore
connection
to server
while
displaying a
camera

Display a
non-video
deviceinTile
Layout

%everbridge‘@

behavior across
connectorsand a
clear indication a
signal was lost,
preferable
method is
displaying a
standard error
message on the
tile.

In some
subsystems, it is
still possible to
display cameras
despite the server
(typically a VMS)
being offline. The
convention s, a
driver must
display avideo if
it can.

If displaying a
camerais
dependent on the
server
connection, the
connector has to
manage a re-
connection loop,
and only try to
restore the feeds
once re-
connected.

Control Center
allows non-video
devices to be
dropped on video
tiles, and the
connector must

(Typical for DVRs
with cameras
physically
connected to it)

Display an error
message in the tile
saying "The video
server is not
connected"

Re-connection
implemented in the
connector
(example: Bosch
BVMS, March
Networks): The

connector (in VCM)

will eventually re-
connect to the
subsystem server
and re-display the
camera without
user intervention.

Display an error
message: "This
device does not
support video"

(Typical for web
service
connection-less
APIs)

Display a camera
regardless of
parent server
state.

Re-connectioniis
not implemented
in the connector
(example: Verint
Nextiva
connector).

The tile will
remain displaying
an error message
until the camera
is manually re-
displayed (or
with a VRP).

(Typical for
web service
connection-
less APIs)

Connector
implements
re-connection
per camera.

The camera
keeps
displaying
video even
with the
server offline.

Native server
configuration
changes

Re-adding a
camerato
subsystem

Previous
Frame and
Next Frame
Video
Operator
Actions

%everbridge‘@

cope with this.

Subsystems

rarely provide API

to inform about
configuration
changes. A user
may need to

either re-enable a

server device or
run a Refresh
Devices server
method to force
downloading a
new
configuration.

In some
subsystems, a re-

added camera has

anew SDKID
which makes the

connector treat it

as a new camera.
A new camera
deviceis

populated and the

device that
represented the
camera earlier
becomes
unusable.

These two
buttons are
typically
implemented for
the SDKs which
do not support
slow motion
(speeds 0.5,0.2

SDK does not
provide away to
detect
configuration
changes.

A user has to re-
enable aserver

device to get a new

configuration.

Subsystem
assigned a new
uniquelDtoare-
added/enabled
camera.

A new Control
Center camera
device is created
for the re-added
camera.

Subsystem SDK
supports slow
motion:

Slow motion is

implemented. Whe

n playback is
paused, it is

possible to use the

SDK does not
provide away to
detect
configuration
changes and the
client wants to
keep the driver
connected.

A server device
implements Refre
sh Devices server
method which
forces the driver
tore-connect
and/or download
the updated
configuration.

Subsystem
assigned the
samelDtoare-
added/enabled
camera.

The same
Control Center
cameradevice s
maintained for
the re-added
camera.

Subsystem SDK
doesn't support
slow motion:

Slow motioniis
not implemented.
When playback is
paused the speed
slider has no

SDK can
detect config
uration
changes (exa
mple: Bosch
BVMS).

The
configuration
changes are
detected
automatically
and no need
for
RefreshXXX
methods on
server device.

%everbridge‘@

Video
Operator
Actions
availability

Audio
Support

Playback

and so on), but
support playback

speed slider control effect. 2 buttons

to change speeds <

of a next/previous ' 1

frame.

The custom Video
Operator Actions
appear in every
connector mode
(Live, Playback,
Paused) even
though most of
them only work in
one mode. For
example, Next
Frame will only
work in Paused
mode.

Thereisno
standard
implementation
of Audio.
However, usually
there are

two buttons:
Audio Mute -
toggles the
camera
microphone
on/off (in other
words, 'Audio In'
feature), Toggle
Audio Out -
enable/disable
streaming audio
from Control
Center client
microphone to
camera speaker.

It is not practical

March Networks
implementation
example:

Audio Mute: When
acamerawith
audio capability is
displayed, the
audio is
automatically
muted by default.

Once switched to

"Previous Frame"
and "Next
Frame" appearin
the video tile
menu.

%everbridge‘@

time when totryrewinding playback mode the
switchingto videotopresent | cameraplaysfrom
Playback time as it takes (Now - 15 seconds)
mode time to record

and buffer video.

The exact timing

is unpredictable

asit's heavily

dependent on a

recorder model

and the network

speed. This

means rewinding

to present time

would usually fail.

Rewindingto a
very recent time
(few seconds
back) may
succeed,

but causes the
driver to stumble,
as thevideo
immediately plays
to the end, then
tries to seek for
more video, load
only few seconds,
then seek again
and soon.

To prevent this,
most drivers try
to rewind to the
last 15-30

seconds instead.

Connectors with
Seek Timeout

Time taken to

Seek rewind a video is :
(rewind) very dependent proper.ty, If

when a on SDK, recording is not
recordingis hardware,and foundwithina

not found network soitcan | 8!Ventime, anerror

message "Footage

be unpredictable. .
not found" is

é&everbridge“p

To prevent a displayed on the
video tile seeking ' tile and the user
endlessly, many can hide the error
connectors message and try
introduce a Seek | seek again.
Timeout property

onaserver

device.

Native video

control may

behave

differently during

rewind process. | Connector
implements an

Some connectors !

show the rewind overlgy showing

process on the 'Seeking' message

video control. in the video tile. Native control
Recorded S ¢ Thisistohideany showsthe
video Seek dOT: conneﬁ O irrelevant video current progress

& seek operation, seek/rewind

and then the especially for operation.

.results arfe loaded subsystems where

into the video seek may rewind to

control. 3 Wrong

Itis preferableto unpredictable time.
show progress in

the video tile

during a long seek

operation.

1. Thetimein
the bottom
left corner
shows the
current
playback time
and gets
updated every | ESssasa
second (for
the standard
x1 speed).

2. TheTeardrop
is moving

Playing back
video

%everbridge‘@

along the time
bar. It should
always stay
within a
timebar
chunk, never
between
chunks).

3. Thestate
shown is
Playing.

1. Thetimein
the bottom
left corner
shows the
current
playback
time. It
doesn't get
updated.
The
Teardrop
is not
moving
along the
timebar.
3. Thestate
shownis
Paused.

Paused video

A

Connector
Seek cannot fetch the
algorithm - Connector can first recording
seek time s fetch the first available:

; The) .
earlier than recording available: . .
the first implementation & The video tile
depends on the The camera displays error

: SDK. playback rewinds message saying,
time to the first "Footage is not
available available recording. available" or
"Recorded video
not found"

recording

Seek Ideally the If the SDK supports | If the Seek

é&everbridge“g

algorithm -

time

between two available time to

recording
chunks

connector should
seeking for a ' tryto play back

the closest

the requested
seek time.

the smart seek, in
other words, finds
the closest
available time
itself, the outcome
totally depends on
the SDK.

algorithmiis
implemented
manually in the
connector:

1. Iftheclosest
available time
is a beginning
of achunk -
play this
chunk from
the beginning

2. Iftheclosest
available time
isanend
time of a
chunk - play
the last 5-10
seconds of

this chunk

e
rrrrrrr

vvvvvvvv

3.Areasonable
criterion for
available video
can be
implemented, for
example, play a
video which is no
more than 1 hour
away from

the desired seek
time. If no
recordings match
the criterion,
display an error
message:
"Footage not
found" or similar.

%everbridge‘@

Playback
seek error
message

Error message
should be
displayed in the
video tile if a user
tries to rewind
video to atime
where there are
no recordings
(and no other
recordings close
enough to the
seek time).

e Displaythe
error message
asan
Information
message so it
can be hidden
and a new seek
operation can
be done without
closing the tile

« if the native
video control
does not
provide its own
error GUI, itis
better to show
anoverlay
displaying the
same error
message. Do
not show
irrelevant
footage as this
may be
confusing.

emeE=Aan

No footage found.

Below is an
example of an error
message to avoid.
For example, it
covers the whole
tile,so auser
cannot access the
calendar control or
timebar to seek
again. The user

has to close the tile.

é&everbridge@’

'Seeking' Tile
state

Seek
Timeout

Scroll
Teardrop on
Time bar

As seek or rewind
video can take a
long time, the tile
should display a
'Seeking' state
until the video is
found and ready
to play.

Many connectors
define a maximum
time allowed to
seek preventing
the Tile to hang
(this is needed for
SDKs which don't
implement this
internally), thisis
set in Seek
Timeout property
on the parent
server device

In some
connectors, the
SDK does not
allow you to
cache seek results
(or query the
actual chunks
available), so each
rewind may take
time.

The player state
should say:
"Seeking"

The tile itself may
display an overlay
with "Seeking..."
message

This is better than
displaying a black
screen or an
irrelevant footage.

When seek starts
the connector
waits for seek
results displaying
'Seeking' statusin
the Tile. If the SDK
returns no results
(or fails to rewind)
for Seek

Timeout, the "No
footage found"
error message is
displayed.

%everbridge‘@

Correct error
message is
Video Export Job displayedin
Video Export or Task is Message column.
Task fails scheduled and The folder in the
then failed. path picked in the
export wizard is
not created.

No error messages
are displayed (or it
candisplay a status

Video Export qureo E ?<port Job message:
Task is orh a; Ilsd d "Cancelled by
cancelled by scheduled an user").

then cancelled by .
user The folder in the

auser. : :
path picked in the
export wizard is

not created.

Video export
when IPSC
Client and . If atimestamp is
subsystem Video gxported I displayed in the
are in one accorc]mg to the The file tlt‘|e actual video file it
Timezone local time set in !ncludes timestamp | o1 1d be in UTC.

’ the Export in UTC.
and IPSC Wizard Example: OnSSlI
Serverisin) Ocularis
another
timezone

Example FSM Implementation

using System;

using System.Collections.Generic;

using System.Globalization;

using System.Threading.Tasks;

using CNL.IPSecurityCenter.Driver.Utility.Threading;using logé4net;

namespace CNL.IPSecurityCenter.Driver.Verint.Nextiva.Ipsc.PlaybackFsm

{

internal class PlaybackFsm : IDisposable

{

private struct StateTransition

%everbridge‘@

command)

override

__command.

override

private readonly EPlaybackStates currentState;
private readonly EPlaybackFsmCommand command;
public StateTransition (EPlaybackStates state, EPlaybackFsmCommand

{

_currentState = state;

_command = command;

}

//need this because this object is used as a dictionary key public
int GetHashCode ()

{

return 17 + 31 * currentState.GetHashCode() + 31 *

GetHashCode () ;

}

//need this because this object is used as a dictionary key public
bool Equals (object obj)

{

var other = (StateTransition)obj;

return this. currentState == other. currentState && this. command ==

other. command;

}

}

protected ILog log;

private string deviceLabel;

/// <summary>

/// Seek Time passed by command, saved in this temporary variable

because the seek command might be rejected

/// </summary>

private DateTime seekTimePending;

/// <summary>

/// Time to play from in the end of successful Seek query
/// </summary>

private DateTime startPlaybackTime;

private SafeTimer seekTimer;

private float speed;

//the stata machine truth table to easily locate valid state

transitions

out) .

given See

private Dictionary<StateTransition, Action> truthTable;

private event EventHandler<FsmSeekEventArgs> CmdRequest;

/// <summary>

/// Fired when seek operation is failed (due to SDK reply or time

/// </summary>

public event EventHandler SeekFailed;

public EPlaybackStates CurrentState { get; private set; }
/// <summary>

/// Gets or sets the last user play/pause command.

/// </summary>

public bool IsPaused { get; set; }

/// <summary>

/// Gets seek time of the current/last seek operation

/// </summary>

public DateTime SeekTime { get; private set; }

/// <summary>

/// Bmount of video in mimutes loaded per query each way - for a
kTime, FSM will seek for media from -

%everbridge‘@

LoadMediaRangeMinutes to LoadMediaRangeMinutes

/// </summary>

public int LoadMediaRangeMinutes { get; private set; }
public DateTime ActualStartTime { get; private set; }
public DateTime ActualEndTime { get; private set; }
/// <summary>

/// Gets or sets the timeout for Seek operation

/// </summary>
public int SeekTimeoutMsec

get { return seekTimer.IntervalMilliseconds; }
set { seekTimer.IntervalMilliseconds = value; }
}
public PlaybackFsm(bool isPaused, string devicelabel)
{
_devicelLabel = devicelabel;
__seekTimer = new SafeTimer (false, 10000, "Seek Timer");
__seekTimer.Elapsed += OnSeekTimeout;
const int throttleDelayMs = 130;
CmdRequest += CreateThrottledEventHandler (ThrottleInvoker,
TimeSpan.FromMilliseconds (throttleDelayMs)) ;
Reset (isPaused) ;
_truthTable = new Dictionary<StateTransition, Action>
{
{ new StateTransition (EPlaybackStates.SeekFailed,
EPlaybackFsmCommand.Seek), SeekInit }, //initialize
new seek operation
{ new StateTransition (EPlaybackStates.SeekInit,
EPlaybackFsmCommand.LoadMedia), LoadMedia }, //the media is
not loaded yet - load it
{ new StateTransition (EPlaybackStates.SeekInit,
EPlaybackFsmCommand.Play), SeekAndStartPlayback }, //the
media is loaded & validated already - start playback (play
or pause)
{ new StateTransition (EPlaybackStates.MediaLoaded,
EPlaybackFsmCommand.ValidateMedia), ValidateMedia }, //the
media is loaded, but not validated - validate it
{ new StateTransition (EPlaybackStates.Medialoaded,
EPlaybackFsmCommand.Seek), SeekOverride }, //start a new
seek query while another one is already in progress
{ new StateTransition (EPlaybackStates.MediaLoaded,
EPlaybackFsmCommand.ChangeSpeed), SaveSpeed }, //save the
speed so playback starts at that speed when we start it
{ new StateTransition (EPlaybackStates.MediaValidated,
EPlaybackFsmCommand.Play), StartPlayback }, //the media
is loaded & validated - start playback (play or pause)
{ new StateTransition (EPlaybackStates.Playback,
EPlaybackFsmCommand.Seek), SeekInit }, //new Seek
request while playing
{ new StateTransition (EPlaybackStates.Playback,
EPlaybackFsmCommand.Pause), Pause }, //pause the playback
{ new StateTransition (EPlaybackStates.Playback,
EPlaybackFsmCommand.ChangeSpeed), ChangeSpeed }, //change
the playback speed
{ new StateTransition (EPlaybackStates.Pause,
EPlaybackFsmCommand.Seek), SeekInit }, //new Seek request while
paused

%everbridge‘@

{ new StateTransition (EPlaybackStates.Pause,

EPlaybackFsmCommand.Play), Resume }, //resume the paused
playback
{ new StateTransition (EPlaybackStates.Pause,
EPlaybackFsmCommand.ChangeSpeed), ChangeSpeed }, //change the

playback speed
{ new StateTransition (EPlaybackStates.Playback,

EPlaybackFsmCommand.Play), Resume }, //Enable Pause for Web

Client
b

}
public EPlaybackStates ProcessCommand (EPlaybackFsmCommand cmd, bool

throttle, DateTime seekTime =
default (DateTime), float speed = 1.0f)

{

var transition = new StateTransition (CurrentState, cmd);
if (! truthTable.ContainsKey(transition))

{
_log.WarnFormat ("{0}: Illegal Command '{1l}' for State

{2}", _devicelabel, cmd, CurrentState);
return EPlaybackStates.Illegal;

}

else
{
Action action = truthTable[transition];
if (action !'= null)
{
var args = new FsmSeekEventArgs (cmd, seekTime,

speed, action);
if (throttle)

{
if (CmdRequest != null)

CmdRequest.Invoke (this, args);

ThrottleInvoker (this, args);

}

return CurrentState;

}

/// <summary>

/// Resets the state machine to initial state wvalues
/// </summary>

public void Reset (bool isPaused)

{
CurrentState = EPlaybackStates.SeekFailed;

IsPaused = isPaused;

_speed = 1f;

__seekTimer.Enabled = false;
ActualStartTime = DateTime.MinValue;
ActualEndTime = DateTime.MaxValue;
_startPlaybackTime = DateTime.MinValue;

LoadMediaRangeMinutes = 60;
}

private void SeekInit ()

%everbridge‘@

_log.DebugFormat ("{0}: SeekInit", devicelabel):;
SwitchToState (EPlaybackStates.SeekInit);
SeekTime = seekTimePending;

_startPlaybackTime = SeekTime; //by default will play from the
desired seek time

if (IsRelevantMedialoaded())

_log.DebugFormat ("{0}: media is already loaded", deviceLabel):;
ProcessCommand (EPlaybackFsmCommand.Play, false);

}
else
{
_seekTimer.Enabled = true;
LoadMedia () ;
}
}
private bool IsRelevantMediaLoaded ()
{
if (ActualStartTime == DateTime.MinValue)
{
return false;
}

return SeekTime >= ActualStartTime && SeekTime <= ActualEndTime;

}
//Fired when media cannot be validated - meaning the media 'loadled'

is invalid and cannot be played back
private void OnSeekTimeout (object sender,

{

EventArgs args)

if (CurrentState == EPlaybackStates.SeekInit || CurrentState ==
EPlaybackStates.Medialoaded
| | CurrentState == EPlaybackStates.MediaValidated)

{
_log.DebugFormat ("{0}: Seek timed out", devicelLabel);
__seekTimer.Enabled = false;
OnSeekFailed (true) ;
}
else
{
_log.WarnFormat ("{0}: Seek time out was ignored! FSM State:
{1}", _devicelLabel, CurrentState);
}
}
//called when Seek process fails or timed out
private void OnSeekFailed(bool fireEvent)

{

_log.InfoFormat ("{0}: Seek failed - no data available",
_deviceLabel) ;
ActualStartTime = DateTime.MinValue;
ActualEndTime = DateTime.MaxValue;

//NOTE: the native pause causes exception in SDK 6.4 SP3, but
might be still relevant in 6.4 SP1

SwitchToState (EPlaybackStates.SeekFailed) ;

if (fireEvent && SeekFailed != null)

{

SeekFailed.Invoke (this, EventArgs.Empty) ;
}

%everbridge‘@

}

//Cancel existing Seek process
private void SeekAbort ()

{
_log.DebugFormat ("{0}: aborting the current Seek",

_deviceLabel) ;
OnSeekFailed (false) ;
}
//Start a new Seek after aborting an Seek in progress
private void SeekOverride ()
{
SeekAbort () ;
SeekInit () ;
}
private void StartPlayback()
{
if (IsPaused)
{

Pause () ;

Play();
}

//called in SeekInit -> Playback transition (media is loaded already)
//need to update time on video control before playback
private void SeekAndStartPlayback ()
{
NativeSeek (startPlaybackTime) ;
StartPlayback() ;
}
private void Play ()
{
_log.DebugFormat ("{0}: Play", devicelLabel):;
SwitchToState (EPlaybackStates.Playback) ;
NativeChangeSpeed (speed) ;
NativeSeek (startPlaybackTime) ;
NativePlay () ;
}
private void ChangeSpeed /()
{
_log.DebugFormat ("{0}: ChangeSpeed", deviceLabel);
SwitchToState (EPlaybackStates.Playback) ;
NativeChangeSpeed (speed) ;
}
private void SaveSpeed ()
{
_log.Debug ($"{ deviceLabel}: SaveSpeed ({ speed})");
}
private void Pause ()
{
_log.DebugFormat ("{0}: Pause", devicelabel);
SwitchToState (EPlaybackStates.Pause) ;
NativePause () ;
}

private void Resume ()

%everbridge‘@

_log.DebugFormat ("{0}: Resume", deviceLabel):;
SwitchToState (EPlaybackStates.Playback) ;
NativeChangeSpeed (speed) ;
NativeResume () ;
}
private void LoadMedia ()
{
_log.DebugFormat ("{0}: LoadMedia", devicelLabel);
if (NativeLoadMedia (SeekTime.AddMinutes (-LoadMediaRangeMinutes),
SeekTime.AddMinutes (LoadMediaRangeMinutes)))
{
SwitchToState (EPlaybackStates.Medialoaded) ;
ProcessCommand (EPlaybackFsmCommand.ValidateMedia, false);
}
else
{
_log.ErrorFormat ("{0}: Load media at {1} has failed",
_devicelLabel, SeekTime) ;
OnSeekFailed (true) ;
}
}
private void ValidateMedia ()
{
NativeValidateMedia (SeekTime) ;
}
////-- Native method stubs
protected virtual void NativeResume ()
{
_log.DebugFormat ("{0}: NativeResume", devicelLabel);
}
protected virtual void NativePlay ()
{
_log.DebugFormat ("{0}: NativePlay", deviceLabel):;
}
protected virtual void NativePause ()
{
_log.DebugFormat ("{0}: NativePause", deviceLabel);
}
/// <summary>
/// Load recorded media from recorder device
/// </summary>
protected virtual bool NativeLoadMedia (DateTime fromTime, DateTime
toTime)
{
_log.DebugFormat ("{0}: Loading recorded media from: {1} to: {2}",
_devicelLabel, fromTime, toTime) ;
return true;
}
/// <summary>
/// Check the loaded media is relevant to the initial user query~
/// </summary>
protected virtual void NativeValidateMedia (DateTime seekTime)
{
_log.DebugFormat ("{0}: NativeValidateMedia", deviceLabel);

}
/// <summary>

%everbridge‘@

/// Update native video control player with desired playback time
/// </summary>
protected virtual void NativeSeek (DateTime startPlaybackTime)
{
_log.DebugFormat ("{0}: NativeSeek - seek time: {1}", devicelabel,
startPlaybackTime) ;
}
protected virtual void NativeChangeSpeed (float speed)
{
_log.DebugFormat ("{0}: NativeChangeSpeed to {1}", devicelabel,
speed) ;
}
/// <summary>
/// Called when the media validation is performed asynchronously by SDK
/// </summary>
public void OnMediaValidated (DateTime actualStart, DateTime actualEnd,
DateTime startPlaybackTime)
{

//external method call - ensure we don't break the SM logic
if (CurrentState == EPlaybackStates.MedialLoaded)
{
_log.DebugFormat (CultureInfo.InvariantCulture, "{0}:
Validated recorded media range from {1} to {2},
start playback from: {3}", devicelabel, actualStart,

actualEnd, startPlaybackTime) ;
ActualStartTime = actualStart;
ActualEndTime = actualEnd;
_startPlaybackTime = startPlaybackTime;
_seekTimer.Enabled = false;
SwitchToState (EPlaybackStates.MediavValidated) ;
ProcessCommand (EPlaybackFsmCommand.Play, false);
}
}
/// <summary>
/// Called when media validation fails (for example if SDK returns
irrelevant results or throws exceptions)
/// </summary>
public void OnMediaValidationFailure ()
{
//external method call - ensure we don't break the SM logic
if (CurrentState == EPlaybackStates.MedialLoaded)
{
_log.DebugFormat ("{0}: Media Validation failed",
_deviceLabel) ;
OnSeekFailed (true) ;
}
}
private void SwitchToState (EPlaybackStates state)
{
_log.DebugFormat ("{0}: Playback SM switching from {1} to {2}",
_devicelabel, CurrentState, state);
CurrentState = state;
}
[System.Diagnostics.CodeAnalysis.SuppressMessage ("Microsoft.Performance"
, "CA1l822:MarkMembersAsStatic", Justification =
"follow the event standard pattern")]
private EventHandler<FsmSeekEventArgs>

%everbridge‘@

CreateThrottledEventHandler (EventHandler<FsmSeekEventArgs> handler, TimeSpan
throttle)

{
bool throttling = false;

return (s, e) =>
{
if (throttling)

{
_log.DebugFormat ("Seek {0} was ignored due to

throttling logic", e.SeekTime)
return;

}
throttling = true;
Task.Delay (throttle) .ContinueWith(=> throttling = false);

bi -
}
//The handler of CmdRequest event

private void ThrottleInvoker (object sender, FsmSeekEventArgs args)

{
_log.DebugFormat ("{0}: Playback FSM, State '{1l}', Command '{2}'",

_devicelLabel, CurrentState, args.Command) ;
__seekTimePending = args.SeekTime;
_speed = args.Speed;
args.FsmAction.Invoke () ;

}

public void Dispose ()

{

if (_seekTimer != null)

{

_seekTimer.Elapsed -= OnSeekTimeout;
__seekTimer.Dispose () ;
_seekTimer = null;

}
CmdRequest = null;

}

}

Control Center ISDK Compatibility

The Control Center ISDK is a set of tools and interfaces exposed in Control Center to
create connectors. Essentially, it is a collection of types and interfaces related to

connectors.

Control Center DDK uses a versioning scheme to describe how APl versions are
backwards-compatible with earlier versions of Control Center.

NOTE: IPSecurityCenter was renamed Control Center from version 5.25 onwards. From
version 5.30 onwards, Driver Development Kit (DDK) was renamed Integrations Software
Development Kit (ISDK).

Control Center ISDK starts at version 3.0. All subsequent versions are backward-
compatible.

%everbridge‘@

Each version of Control Center is compatible with one or more ISDK Versions.

Control

Center DDK Version

w
o

31 132 |33 34 35 36 37 38 39

5.0.x
5.1.x
5.2.x
5.3.x
5.4.x
5.5.x
5.6.x
5.7.x
5.8.x
5.9.x

5.10
5.10.1
5.10.2

ASAYAVAVAVAVASATANAY
ASAYA YA YA YANANAS

A SAYAYATANAY

LA NA NA WAN

ASANA A

ASAYAY

<
<
<
<
<
<
<
<

5.10.3
5.12

5.13
5.14.5
5.18
5.19
5.20
5.22
5.23
5.24
5.25

CLLLLLRL &
CLLLLLC] &
CLLLRLR &
CLLLRL &
CLLLLLCL &
LR]
RSN S SR S SR SRR
LR Rs
LK
L]

ASAYAVAYAVAVAVASANER Y
LA A N SN

ASAYAVAYAVAVAVASANER Y

%everbridge‘@

ISDK Versions

The following sections list the changes in the APIs for each released version of the DDK.
ISDK 3.0

ISDK 3.0 succeeded ISDK 2.4. From version 3.0, connectors must be capable of being
loaded into a 64-bit process to query their type information, as well as a 32-bit process.
Therefore, connectors must be built for any CPU and must not expose any 32-bit-only
types (such as types defined in a 32-bit-only 3rd party SDK, for example).

The IvideoControlWithDynamicOperatorActions interface definition was
added. The IVideoControlWithDynamicOperatorActions isanoptionalinterface
implemented by a video control to expose additional actions other than the ones indicated
statically (by OperatorAction attribute onits methods).

namespace CNL.IPSecurityCenter.Driver.Video.DynamicOperatorActions
{
/// <summary>
/// Optionally implemented by a video control to expose additional
actions other than the
/// ones indicated statically (by OperatorAction attribute on its
methods) .
/// </summary>
public interface IVideoControlWithDynamicOperatorActions
{
/// <summary>
/// Raised by the video control to specify what actions it supports
/// </summary>
event EventHandler<DynamicOperatorActionsChangedEventArgs>
DynamicOperatorActionsChanged;
/// <summary>
/// NB - currently ignored by IPSC!
/// </summary>
event EventHandler<DynamicOperatorActionStateChangedEventArgs>
DynamicOperatorActionStateChanged;
/// <summary>
/// Executes one of the actions supported by the control (according
to the most recent
/// DynamicOperatorActionsChanged event raised.
/// </summary>
/// <param name='name'>The name of the action to execute</param>
void ExecuteDynamicOperatorAction (string name) ;

%everbridge‘@

ISDK 3.1
ISDK 3.1 contains some new interfaces that connectors can optionally implement.
IVideoControlWithDynamicOperatorActions

You can implement this interface for a video control to expose additional actions other
than the ones indicated statically (by OperatorAction attribute onits methods).

{
/// <summary>
/// Optionally implemented by a video control to expose additional
actions other than the
/// ones indicated statically (by OperatorAction attribute on its
methods) .
/// </summary>
public interface IVideoControlWithDynamicOperatorActions
{
/// <summary>
/// Raised by the video control to specify what actions it supports
/// </summary>
event EventHandler<DynamicOperatorActionsChangedEventArgs>
DynamicOperatorActionsChanged;
/// <summary>
/// NB - currently ignored by IPSC!
/// </summary>
event EventHandler<DynamicOperatorActionStateChangedEventArgs>
DynamicOperatorActionStateChanged;
/// <summary>
/// Executes one of the actions supported by the control (according
to the most recent
/// DynamicOperatorActionsChanged event raised.
/// </summary>
/// <param name='name'>The name of the action to execute</param>
void ExecuteDynamicOperatorAction (string name) ;

}

IDeviceOverridesLabel

Allows a device to stop the user changing its label. Normally, Control Center allows the
user to change the label of a device. However, a connector may control the label. In this
case, you do not want to allow a user to also change the label as the connector can
overwrite the label at any time, without warning.

A likely pattern is that a VMS connector may want to allow the user to decide if camera
device labels should be automatically updated from the external subsystem. In which case,
the connector's main server device could have a boolean property called, for example,
UseSubsystemCameralLabels, and the camera/child device can delegate its own
OverridesLabel property tothat setting.
// <summary>

/// Allows a device to stop the user changing its label.

/// </summary>
public interface IDeviceOverridesLabel

{

/// <summary>

%everbridge‘@

/// If true, IPSC will not allow the user to change the label of this
device, as the
/// device itself may change the label at any time due to changes in
the subsystem.
/// </summary>
bool OverridesLabel { get; }
}

DeviceOverridesChildOnlineState (Attribute)

This attribute, when applied, allows a parent device to control the online state of its child
devices. In other words, the devices do not automatically follow the enabled/disabled
state of the parent device and may stay in an alternate state when a parent device has it
state changed, rather that the default operation of following the parent device state. Child
devices of a device are defined as all the devices connected to it that do not implement
IConnectableDevice.

Normally, when a parent device is brought online, all its child devices have their online
states set to online, although this happens after an unpredictable delay. Where the
connector wishes to update its child device states to make them accurately reflect the
states of whatever real-world devices they represent, it has previously been necessary to
use a Thread.Sleep work-round to give Control Center enough time to finish setting the
states to online.

Now, the server device's contract can optionally have the attribute
DeviceOverridesChildOnlineState (noparameters). Only three state changes
are affected: Online, Warning and Custom, as they can describe a 'healthy' state.

CAUTION: There are two places a connector has to implement special code if it adds this
attribute to the server's contract:

1.Intheserver's Connect method, it has to update each child device's state.

2. 0On the child, it must handle the EnabledChanged event to also update that child
device's state when the device is Enabled.

This table summarises whether a parent's state change is propagated to its children,
depending on whether the default behavior has been overridden by applying this attribute
to the server device class.

State Default Overridden
Connecting No No
Online Yes No
Warning Yes No
Custom Yes No
Disabled Yes Yes
Failed Yes Yes

Offline Yes Yes

%everbridge‘@

ISDK 3.2

ISDK 3.2 implements the following interfaces.
SupportedPreviousDriverAttribute

When there are datatype changes in properties between connector versions, this
attribute can be used to mitigate serialisation issues and allow objects conversion of types
between the old connector and the new connector. The Connector developer
documentation gives more detail on how to use this interface.

ISupportsPausingActivity

An interface to support notifying a connector when a tile is not active. When applied to a
device, implementation of this interface indicates that the connector supports some form
of pausing of its activity while still monitoring device state. It is intended to be used
primarily by video connectors, although, any data steaming device may be a candidate to
pause/resume the supplied data stream.

Typically, the functions of this interface are called when the Ul framework knows that
whatever the connector is doing is currently not visible to the user (for example, a video
tile is not visible). Ideally, the pausing and resuming of activity should be implemented in
as efficient a way as possible.

/// <summary>

/// Implementation of this interface indicates that the driver supports
some form

/// of 'pausing' of its activity whilst still monitoring device state and
the like.

/// It intended to be used by Video Drivers to pause/resume display of
video. Typically

/// the functions of this interface will be called when the UI framework
knows that

/// whatever the driver is doing is currently not visible to the user
(e.g. video

/// tile is not visible). Ideally the pausing and resuming of activity
should be

/// implemented in as efficient a way as possible.

/// </summary>

public interface ISupportsPausingActivity

Motion JPEG support

A set of three interfaces indicating a device that is capable of producing data streams that
meets the specification of Motion JPEG.

/// <summary>

/// An open stream that is producing JPEG frames, implemented by a
driver.

/// The caller to this interface is part of IPSC, not the driver.

/// </summary>

public interface IMotionJpegStream : IDisposable

/// <summary>

/// Implemented by a device (typically a camera) when it is capable of
streaming

/// in MJPEG format.

/// </summary>

%everbridge‘@

public interface IMotionJpegSource

/// <summary>

/// An object representing a single frame of video. Implement this
interface

/// in a driver if you want to delay computing the frame image until it
is

/// actually needed.

/// </summary>

public interface IMotionJpegFrame

ThrottledEventManager

ThrottledEventManager class added to support device connector event throttling. It
creates an event aggregation manager, where you can define the rate at which events are
sent to the rest of the Control Center systems. The throttling function and the event
generated are defined by you and events, with potential information on items, such as
number of events seen since last throttling action, can be added to the sent event.

namespace CNL.IPSecurityCenter.Driver.ThrottledEvents
{
/// <summary>
/17
/// </summary>
public class ThrottledEventManager
{
private static readonly ThrottledEventManager instance = new
ThrottledEventManager () ;
private static readonly object locker = new object();
private static readonly int PollMSecsInterval = 100;
private readonly Dictionary<Type, ThrottledEventManager.EventDefinition>
_eventDefinitions = new Dictionary<Type,
ThrottledEventManager.EventDefinition> () ;
private Task pollTask = (Task) null;
private ThrottledEventManager () {}
public static ThrottledEventManager Instance =>
ThrottledEventManager. instance;
public void RegisterThrottledEvent<TD, TA> (
int maxEventsPerSec,
ThrottledEventManager.AggregateFunction<TD, TA> aggregateFunc,
ThrottledEventManager.RaiseEventAction<TD, TA> raiseEventAction)
where TD : IDevice
where TA : DeviceEventArgs
{ .}
public void RaiseEvent<TD, TA>(TD sender, TA args)
where TD : IDevice
where TA : DeviceEventArgs
{ .}
private void StartPollLoop ()
{ ..}
private void PollTask ()
{ .}
public delegate bool AggregateFunction<TD, TA>(TD devl, TA argsl, TD
dev2, TA args2)
where TD : IDevice
where TA : DeviceEventArgs;
public delegate void RaiseEventAction<TD, TA>(TD sender, TA args)
where TD : IDevice

%everbridge‘@

where TA : DeviceEventArgs;
}
}
namespace CNL.IPSecurityCenter.Driver.ThrottledEvents
{
public IDevice Sender { get; set; }
public DeviceEventArgs Event { get; set; }
public DateTime NextEventRaiseTime { get; set; }
public bool Sent { get; set; }
}
namespace CNL.IPSecurityCenter.Driver.ThrottledEvents
{
private class EventDefinition
{
public IList<ThrottledEventManager.QueuedEvent> Queued =
(IList<ThrottledEventManager.QueuedE
vent>)
New
List<ThrottledEventManager.QueuedEvent> () ;
public EventDefinition (
int minMSecBetweenEvents,
ThrottledEventManager.AggregateFunction<IDevice, DeviceEventArgs>
aggregateFunc,
ThrottledEventManager.RaiseEventAction<IDevice, DeviceEventArgs>
raiseEventAction)
{ ..}
public int MinMSecBetweenEvents { get; }
public ThrottledEventManager.AggregateFunction<IDevice,
DeviceEventArgs> AggregateFunc
{ get; }
public ThrottledEventManager.RaiseEventAction<IDevice,
DeviceEventArgs> RaiseEventAction
{ get; }
}
}

ISDK 3.3

ISDK 3.3 implements two Event interfaces, both associated with displaying event
information on the time-bar of the Video Connection Manager (VCM) display.

ITimebarDisplayAlwaysEvent

When a connector event implements this interface (and it only make senses for events on
cameras), whenever this event is raised, it will always be displayed as a dot on a timebar, if
that camerais being shown in playback mode.

/// <summary>

/// This event will always be displayed as a dot on timebar in playback
mode

/// </summary>

[DesignerVisibleEventInterface]

[DisplayName (DeviceConstants.ResourcePath,
'DisplayNameTimebarDisplayAlwaysEvent', typeof (ITimebarDisplayAlwaysEvent))]

[Description (DeviceConstants.ResourcePath, 'DescriptionTimebarDisplayAlw
aysEvent', typeof (ITimebarDisplayAlwaysEvent))]

public interface ITimebarDisplayAlwaysEvent

%everbridge‘@

ITimebarDisplayOptionalEvent

When a connector's event implements this interface (and it only makes sense only for
events on cameras), whenever this event is raised, it can be displayed as a dot on
timebar, if that camera is being shown in playback mode. A requirement of its use is that
you have to configure on the camera object in its property grid what optional events
should be displayed on the VCM Timebar. The property on a Camera is called
‘TimebarEvents'
/// <summary>
/// This event can be diplayed as a dot on timebar in playback mode
/// </summary>
[DesignerVisibleEventInterface]
[DisplayName (DeviceConstants.ResourcePath,
'DisplayNameTimebarDisplayOptionalEvent',
typeof (ITimebarDisplayOptionalEvent))]
[Description (DeviceConstants.ResourcePath,
'DescriptionTimebarDisplayOptionalEvent',
typeof (ITimebarDisplayOptionalEvent))]
public interface ITimebarDisplayOptionalEvent

ISDK 3.4

This version implements a number of new interfaces and types to support display of
position-aware entities on schematic scenes.
These mirror the entities for geo-spatial connectors.

IPositionAware

When this interface is applied to a device or object it allows Control Center to plot the
object on a schematic screen display.

namespace CNL.IPSecurityCenter.Driver.Types.PositionAware

{

/// <summary>Defines a position aware object</summary>

[ServiceContract]

[DesignerVisible]

[DisplayName ("CNL.IPSecurityCenter.Driver.Strings",
"DisplayNameIPositionAware", typeof (IPositionAware))]

[Description ("CNL.IPSecurityCenter.Driver.Strings",
"DescriptionIPositionAware", typeof (IPositionAware))]
public interface IPositionAware : IDevice
{
/// <summary>
/// The Positional Reference Identifier that the coordinates are
using
/// </summary>
[CategoryPosition]
[DisplayName ("CNL.IPSecurityCenter.Driver.Strings",
"DisplayNamePositionalReferencelIdentifier", typeof (IPositionAware))]
[Description ("CNL.IPSecurityCenter.Driver.Strings",
"DisplayNamePositionalReferenceldentifier", typeof (IPositionAware))]
int PositionalReferenceIdentifier { [OperationContract] get;
[OperationContract] set; }
/// <summary>The X Axis coordinate value.</summary>
[CategoryPosition]
[DisplayName ("CNL.IPSecurityCenter.Driver.Strings", "DisplayNameX",

%everbridge‘@

typeof (IPositionAware))]

[Description ("CNL.IPSecurityCenter.Driver.Strings", "DisplayNameX",
typeof (IPositionAware))]

double X { [OperationContract] get; [OperationContract] set; }

/// <summary>The Y Axis coordinate value.</summary>

[CategoryPosition]

[DisplayName ("CNL.IPSecurityCenter.Driver.Strings", "DisplayNameY",
typeof (IPositionAware))]

[Description ("CNL.IPSecurityCenter.Driver.Strings", "DisplayNameY",
typeof (IPositionAware))]

double Y { [OperationContract] get; [OperationContract] set; }

/// <summary>The 7 Axis coordinate value.</summary>

[CategoryPosition]

[DisplayName ("CNL.IPSecurityCenter.Driver.Strings", "DisplayNameZ",
typeof (IPositionAware))]

[Description ("CNL.IPSecurityCenter.Driver.Strings", "DisplayNameZzZ",
typeof (IPositionAware))]

double Z { [OperationContract] get; [OperationContract] set; }

}
}

IPositionAwareEvent

When applied against an event, IPositionAwareEvent provides location speed and
heading information into Control Center allowing the system to update the schematic
object information based on VRPs.

namespace CNL.IPSecurityCenter.Driver.Types.PositionAware
{
/// <summary>Defines a locatable event</summary>
[DesignerVisibleEventInterface]
[DisplayName ("CNL.IPSecurityCenter.Driver.Strings",
"DisplayNamePositionAwareEvent", typeof (IPositionAwareEvent))]
[Description ("CNL.IPSecurityCenter.Driver.Strings",
"DescriptionPositionAwareEvent", typeof (IPositionAwareEvent))]
public interface IPositionAwareEvent
{
/// <summary>
/17 The Positional Reference Identifier for the system that the
coordinates are using
/// </summary>
[CategoryPosition]
[DisplayName ("DisplayNamePositionalReferenceIdentifier", typeof
(IPositionAwareEvent))]
[Description ("DisplayNamePositionalReferenceIdentifier", typeof
(IPositionAwareEvent))]
int PositionalReferenceldentifier { get; set; }
/// <summary>The X Axis Value.</summary>
[CategoryPosition]
[DisplayName ("DisplayNameX", typeof (IPositionAwareEvent))]
[Description ("DisplayNameX", typeof (IPositionAwareEvent))]
double? X { get; set; }
/// <summary>The Y Axis Value.</summary>
[CategoryPosition]
[DisplayName ("DisplayNameY", typeof (IPositionAwareEvent))
[Description ("DisplayNameY", typeof (IPositionAwareEvent))
double? Y { get; set; }

]
]

%everbridge‘@

/// <summary>The Z Axis Value.</summary>
[CategoryPosition]

[DisplayName ("DisplayNameZz", typeof (IPositionAwareEvent
[Description ("DisplayNameZ", typeof (IPositionAwareEvent
double? Z { get; set; }

/// <summary>Heading Value.</summary>

[CategoryPosition]

[DisplayName ("DisplayNameHeading", typeof (IPositionAwareEvent))]
[Description ("The heading of this track", typeof (IPositionAwareEvent))]
double? Heading { get; set; }

/// <summary>Speed Value.</summary>

[CategoryPosition]

[DisplayName ("DisplayNameSpeed", typeof (IPositionAwareEvent))]
[Description ("The speed of this track", typeof (IPositionAwareEvent))]
double? Speed { get; set; }

))]
))]

}
IPositionAwareTracking

This is an extension to the IPositionAware interface and allows the object to provide a
tracked position on the schematic scene

namespace CNL.IPSecurityCenter.Driver.Types.PositionAware
{
/// <summary>Defines a positional Tracking Object</summary>
[ServiceContract]
[DesignerVisible]
[DisplayName ("CNL.IPSecurityCenter.Driver.Strings",
"DisplayNameIPositionAwareTracking", typeof (IPositionAwareTracking))]
[Description ("CNL.IPSecurityCenter.Driver.Strings",
"DescriptionIPositionAwareTracking", typeof (IPositionAwareTracking))]
public interface IPositionAwareTracking : IPositionAware, IDevice
{
/// <summary>Last update in UTC format</summary>
[CategoryPosition]
[DisplayName ("CNL.IPSecurityCenter.Driver.Strings",
"DisplayNamelLastUpdateUtc", typeof (IPositionAwareTracking))]
[Description ("CNL.IPSecurityCenter.Driver.Strings",
"DescriptionLastUpdateUtc", typeof (IPositionAwareTracking))]
DateTime LastUpdateUtc { [OperationContract] get; [OperationContract]
set; }
/// <summary>Last heading of the device</summary>
[CategoryPosition]
[DisplayName ("CNL.IPSecurityCenter.Driver.Strings",
"DisplayNameHeading", typeof (IPositionAwareTracking))]
[Description ("CNL.IPSecurityCenter.Driver.Strings",
"DescriptionHeading", typeof (IPositionAwareTracking))]
double? Heading { [OperationContract] get; [OperationContract] set; }
/// <summary>Last heading of the device</summary>
[CategoryPosition]
[DisplayName ("CNL.IPSecurityCenter.Driver.Strings", "DisplayNameSpeed",
typeof (IPositionAwareTracking))]
[Description ("CNL.IPSecurityCenter.Driver.Strings", "DescriptionSpeed",
typeof (IPositionAwareTracking))]
double? Speed { [OperationContract] get; [OperationContract] set; }
/// <summary>Raised when an object's Position has changed</summary>

%everbridge‘@

[DeviceEvent]
[DisplayName ("CNL.IPSecurityCenter.Driver.Strings",
"DisplayNamePositionChanged", typeof (IPositionAwareTracking))]
[Description ("CNL.IPSecurityCenter.Driver.Strings",
"DescriptionPositionChanged", typeof (IPositionAwareTracking))]
event EventHandler<PositionChangedEventArgs> PositionChanged;
}
}

ITrackablePositionAwareEvent

This is an extension to the IPositionAwareEvent interface that adds a unique Trackld to an
event and allows Control Center to maintain a track associated with changes in position of
the specified object.

namespace CNL.IPSecurityCenter.Driver.Types.PositionAware
{

/// <summary>Defines a trackable event</summary>

[DesignerVisibleEventInterface]

[DisplayName ("CNL.IPSecurityCenter.Driver.Strings",
"DisplayNameTrackablePositionAwareEvent", typeof
(ITrackablePositionAwareEvent))]

[Description ("CNL.IPSecurityCenter.Driver.Strings",
"DescriptionTrackablePositionAwareEvent", typeof
(ITrackablePositionAwareEvent))]

public interface ITrackablePositionAwareEvent : IPositionAwareEvent

{

/// <summary>Id of a track</summary>

[CategoryPosition]

[DisplayName ("DisplayNameTrackId", typeof
(ITrackablePositionAwareEvent))]

[Description("Identifier of this track", typeof
(ITrackablePositionAwareEvent))]

string TrackId { get; set; }

}

}

PositionChangedEventArgs

Event arguments used in notifying Control Center that the device location has been
updated.

namespace CNL.IPSecurityCenter.Driver.Types.PositionAware
{
/// <summary>
/// Event Arguments used when a device has changed position
/// </summary>
public class PositionChangedEventArgs : DeviceEventArgs
{
/// <summary>Position Changed Event Args Constructor</summary>
public PositionChangedEventArgs (IDevice device)
base (device.Identifier)
{ }
/// <summary>Position Changed Event Args Constructor</summary>
public PositionChangedEventArgs (IDevice device, DateTime date)
base (device.Identifier, date)

{ }

/// <summary>DateTime the movement event occured</summary>

%everbridge‘@

[CategoryPosition]

[DisplayName ("DisplayNameLastUpdateUtc", typeof
(PositionChangedEventArgs))]

[Description ("The date time of this objects last movement", typeof
(PositionChangedEventArgs))]

public DateTime UpdatedDateTime { get; set; }

/// <summary>

/// The Positional Reference Identifier for the system that the
coordinates are using

/// </summary>

[CategoryPosition]

[DisplayName ("DisplayNamePositionalReferenceIdentifier", typeof
(PositionChangedEventArgs))]

[Description ("The Positional Reference Identifier of the co-ordinates",
typeof (PositionChangedEventArgs))]

public int PositionalReferenceIdentifier { get; set; }

/// <summary>The current Y of the object</summary>

[CategoryPosition]

[DisplayName ("DisplayNameY", typeof (PositionChangedEventArgs))]

[Description ("The last Y of this object", typeof
(PositionChangedEventArgs))]

public double Y { get; set; }

/// <summary>The current X of the object</summary>

[CategoryPosition]

[DisplayName ("DisplayNameX", typeof (PositionChangedEventArgs))]

[Description ("The last X of this object", typeof
(PositionChangedEventArgs))]

public double X { get; set; }

/// <summary>The current Z of the object</summary>

[CategoryPosition]

[DisplayName ("DisplayNameZ", typeof (PositionChangedEventArgs))]

[Description ("The last Z of this object", typeof
(PositionChangedEventArgs))]

public double Z { get; set; }

/// <summary>The current heading of the object</summary>

[CategoryPosition]

[DisplayName ("DisplayNameHeading", typeof (PositionChangedEventArgs))]

[Description ("The last heading of this object", typeof
(PositionChangedEventArgs))]

public double? Heading { get; set; }

/// <summary>The current speed of the object</summary>

[CategoryPosition]

[DisplayName ("DisplayNameSpeed", typeof (PositionChangedEventArgs))]

[Description ("The last speed of this object", typeof
(PositionChangedEventArgs))]

public double? Speed { get; set; }

}

%everbridge‘@

ISDK 3.5

ISDK 3.5 implements the following attributes and interfaces.
x64BitCompatibilityAttribute

This attribute is applied to a video control / device class, to allow hosting in a 64-bit
process if possible. This attribute should only be applied if the third-party SDK supports
running as a 64-bit process.

[AttributeUsage (AttributeTargets.Class)]
public sealed class x64BitCompatibilityAttribute : Attribute

{
}

IVideoControlLifetimeManager (aka Lifetime Manager)

Types that implement this are instantiated when the Video Control Manager starts-up.
Everbridge recommends that this be used by CCTV drivers for pre-loading and caching
connections during login before the first video is displayed. Caching SDK connections
should be optional.

When this interface is implemented, it effectively leaves a permanent connection to the
underlying Video system, even when there are no actively displayed video streams. The
consequence of this is that no third-party SDK initialization is required on initial video
display, removing any delay associated with that initialization.

NOTE: Be aware that, depending on the licensing model of the third-party SDK, one
connection license is used at all times, for each client and VCM which may require the
purchase of additional licenses.

public interface IVideoControlLifetimeManager : IDisposable
{
/// <summary>
/// This method will be called when the Video Control Manager is
started during login and re-starting if crashed
/// </summary>
void Initialise (IDeviceRepository deviceRepository);

}
ISwitchCamera

ISwitchCamera should be implemented on a video control to optimise
performance for switching cameras.

public interface ISwitchCamera
{
/// <summary>
/// Called on the Video Control when a device of the same type is
being switched
/// </summary>
void SwitchCamera (Guid devicelIdentifier);

%everbridge‘@

ISDK 3.6
ISDK 3.6 implemented the following interfaces.
DeviceCategoryType

Three additional device categories to support licensing have been added to the device
types.

/// <summary>
/// The device that has Geographical positions
/// </summary>
GIS
/// <summary>
/// The device is a Perimeter Intrusion Detection System
/// </summary>
PIDS
/// <summary>
/// Hazmat And CBRNe
/// </summary>
CBRNe

BitArithmeticHelper

A helper class in CNL.IPSecurityCenter.Driver.Utility dll for various bit operations, it
allows for the following fuctionalities:

e Merge arrays

o Set, check and reset a bitin a byte or in a byte array
e Create ashort number out of 2 bytes

o Getaprintable version for a byte array

e Createacopy of apart of anarray

Operation Scheduler
Operation Scheduler has the following use cases.

o Implementation of asynchronous APls/protocols where the subsystem notifies
that the command/operation is completed. However, some commands must be
executed in a strict synchronisation (because the subsystem may require it or the
next operation is dependent on the previous one).

e Inconsistent asynchronous APls/SDKs in which the context of acommand has to
be saved (as a command ID, for example).

Operation Scheduler has the following terms.

o Operation - an atomic unit of work, executed synchronously (only one Operation is
executed at any given time). An Operation has a unique ID, a Timeout (setting the
execution time limit), the execution result can be True on success or False on
failure.

« Scenario - a sequence (linked list) of Operation instances, only one Scenario can
execute at atime.

o Operation Scheduler holds a queue of scheduled Operations.
o Timeout must be set for each Operation.
o Operation Scheduler must initialize a set of Operations and Scenarios.

%everbridge‘@

o If Scenario has operations of a same type, you must create a separate
Operation object for each Operation.

o Operations must not be shared between Scenarios, it can lead to
parameters overriding whether an operation has failed or succeeded,
and the Operation result may break current Scenario execution. If it's
decided an Operation Failure doesn't cause a Scenario to abort, the
Scenario is still reported as completed successfully.

o You cannot cancel Operations or Scenarios after scheduling.

Operation Scheduler has the following list of classes.

e OperationScheduler
e Operation

e Scenario

e ScenarioEventArgs
e ScenarioStatus

ISDK 3.7

To support the independent ability of device connectors (sometimes called Matrix
Connectors) to coordinate object detection and tracking the following capabilities were
added to the ISDK.

DevicelnterfaceType Additions

Two new interface types introduced into the DeviceInterfaceType enum.Thefirstis
VideoPlayback whichisintended for devices to advertise connections providing
VideoPlayback features from another Matrix connector,and PtzControl providing Ptz
and SlewToCue features.

// Summary:

// The interface is a video playback.

VideoPlayback = 14,

// Summary:

// The interface is a Camera Pan Tilt Zoom Control.
PtzControl = 15

IOrientationAware & IGeoSpatialOrientationAware Interfaces

Two new interfaces support devices reporting their orientation. This allows devices to
have dynamically drawn viewsheds within Geographical scenes within the application.

IOrientationAware

An interface for devices that are orientated based on relative orientation.

NOTE: The relative orientation of the device is considered the device's orientation when
facing forward along a horizontal plane. An example would be for a camera, the lens facing
'forward' and the camera body being horizontal.

public interface IOrientationAware : IDevice
{
/// <summary>
/// Raised when the device's orientation is changed. For initial
purposes, devices
/// are not expected to exceed raising a maximum of 10 notifications

%everbridge‘@

per second.

/// When the device's <see cref='SupportsFieldOfView'/> is True, the
event MUST

/// populate the Field of View associated fields.

/// </summary>

event EventHandler<DeviceOrientationChangedEventArgs>
DeviceOrientationChanged;

/// <summary>

/// Gets the current device relative orientation.

/// </summary>

[System.ComponentModel .Browsable (false)]

DeviceOrientation CurrentOrientation { get; }

/// <summary>

/// Gets whether the <see cref='CurrentOrientation'/> also reports
the Field of View

/// of the device using the <see cref='DeviceOrientation'/> derived
object.

/// </summary>

bool SupportsFieldOfView { get; }

/// <summary>

/// Gets the normalized percentage of a complete rotation supporting
0.0 to 1.0.

/// The angle is measured from forward facing, in a clockwise
direction, meaning

/// 0.25 is 90 degrees clockwise, 0.5 is 180 degrees and 1.0 is a
full rotation

/// (360 degrees) .

/// </summary>

double CurrentOrientationAzimuth { get; }

/// <summary>

/// Gets the normalized percentage of a complete rotation supporting
-0.25 to 0.25.

/// The angle is measured from horizontal, starting in an upwards
direction, meaning

/// 0.25 is 90 degrees from horizontal (vertically straight up), and
-0.25 is -90 or 270

/// degrees from horizontal (vertically straight down) .

/// </summary>

double CurrentOrientationElevation { get; }

/// <summary>

/// Gets the normalized percentage of a complete arc supporting 0.0
to 1.0. The range

/// is considered centered relative to configured orientation. This
means a arc of 0.25

/// would be a 90 degree horizontal arc centered at the associated
orientation, with

/// +-45 degree field of view from the orientation.

/// </summary>

double? CurrentFieldOfViewAzimuthArc { get; }

/// <summary>

/// Gets the normalized percentage of a complete arc supporting 0.0
to 1.0. The range

/// is considered centered relative to configured orientation. This
means a arc of 0.25

/// would be a 90 degree horizontal arc centered at the associated
orientation, with

/// +-45 degree field of view from the orientation.

%everbridge‘@

/// </summary>

double? CurrentFieldOfViewElevationArc { get; }

/// <summary>

/// Gets the minimum usable range of the field of view in meters.
This explicitly indicates

/// that the field of view may not covered the area between the
device and the minimum range.

/17

/// This may be calculated by the driver based on reasonable
knowledge of the capabilities

/// of the device (ie. the configured minimum range on a radar or the
known focus point

/// on a camera). This may also be calculated based on a static
configuration exposed to

/// the user and manipulated by the known state (ie. zoom) of the

device.

/17

/// This is an optional field, even when the field of view is
available.

/// </summary>

double? CurrentFieldOfViewMinimumRange { get; }

/// <summary>

/// Gets the maximum usable range of the field of view in meters.

/17

/// This may be calculated by the driver based on reasonable
knowledge of the capabilities

/// of the device (ie. the configured maximum range on a radar or the
known focus point

/// on a camera). This may also be calculated based on a static
configuration exposed to

/// the user and manipulated by the known state (ie. zoom) of the

device.

/17

/// This is an optional field, even when the field of view is
available.

/// </summary>
double? CurrentFieldOfViewMaximumRange { get; }

}
IGeoSpatialOrientationAware

This interface provides the orientation alignment to the Geo-Spatial environment so the
device can be displayed correctly orientated within geographical scenes and is required to
be used alongside IGeoSpatialAwareWithAlt to correctly positionthe device.

public interface IGeoSpatialOrientationAware : IOrientationAware
{

/// <summary>

/// Gets the normalized percentage of a complete rotation supporting
0.0 to 1.0.

/// The angle is measured from forward facing, in a clockwise
direction, meaning

/// 0.25 is 90 degrees clockwise, 0.5 is 180 degrees and 1.0 is a
full rotation

/// (360 degrees).

/17

/// Example for this is a camera base-orientated due east would have

é&everbridge“p

a value of +0.25

/// indicating the 'front' of the device is facing east and all
orientation is considered

/// relative to this direction.

/// </summary>

double BaseOrientationYawFromNorth { get; set; }

/// <summary>

/// Gets the normalized percentage of a complete rotation supporting
-0.25 to 0.25.

/// The angle is measured from the horizontal surface of the earth,
starting in an

/// upwards direction, meaning 0.25 is 90 degrees from horizontal
(vertically straight

/// up), and -0.25 is -90 or 270 degrees from horizontal (vertically
straight down) .

/17

/// Limited to the range -0.25 and +0.25 - for inverted devices use

/// <see cref='BaseOrientationRoll'/>. This value indicates the
elevation

/// angle difference between the front of the device (relative to its
tilt point)

/// and the surface of the earth. This is only required for cameras
not mounted on a

/// flat levelled surface - ie. device mounted on sloped roof)

/// </summary>

double BaseOrientationPitch { get; }

/// <summary>

/// Gets the normalized percentage of a complete rotation supporting
-0.5 to 0.5.

/// The angle is measured from the horizontal surface of the earth,
along the axis

/// formed between the center and front of the device, meaning 0.25
is rolled 90

/// degrees clockwise through this axis, and -0.25 is rolled 90
degrees anti-clockwise

/// through this axis.

/17

/// Limited to the range -0.5 and +0.5. This value indicates the
elevation angle

/// difference between the right of the device (relative to its tilt
point) and the

/// surface of the earth. This is only required for cameras not
mounted on a flat

/// leveled surface - ie. device mounted on side of a building or
inverted on ceiling)

/// </summary>

double BaseOrientationRoll { get; }

%everbridge‘@

Geo Spatial Extensions

Additional interface extensions are available for Geo Spatial and tracking devices.
IGeoSpatialAwareWithAlt

Extension to the IGeoSpatialAware adds the Altitude field to IGeoSpatialAware.

public interface IGeoSpatialAwareWithAlt
{
/// <summary>
/// Altitude from Mean Sea Level (MSL) in meters.
/// </summary>
double? Altitude { get; set; }
}

IGeoSpatialAwareWithAltEvent

Extension for IGeoSpatialAwareEvent adds Altitude and Vertical Rate fields to
reported Geo Spatial events.

public interface IGeoSpatialAwareWithAltEvent
{
/// <summary>
/// Altitude from Mean Sea Level (MSL) in meters.
/// </summary>
double? Altitude { get; set; }
/// <summary>
/// Vertical Rate Value in meters per second. This is the rate of
altitude
/// change where positive values means ascending and negative is
descending.
/// </summary>
double? VerticalRate { get; set; }
}

IRelativeGeoSpatialAwareEvent

Extension for IGeoSpatialAwareEvent where the reporting source also provides a
Relative Position in reported Geo Spatial events.

/// </summary>
/// Interface for devices that can PTZ to follow a track - Slew to Cue.
/// </summary>
public interface ISlewToCue : IDevice
{
/// <summary>
/// Raised when the device starts following a track.
/// </summary>
event EventHandler<SlewToCueStartedEventArgs> SlewToCueStarted;
/// <summary>
/// Raised when the device stops following a track.
/// </summary>
event EventHandler<SlewToCueStoppedEventArgs> SlewToCueStopped;
/// <summary>
/// Start tracking the object assigned to the given track ID.
/// </summary>
/// <param name='trackId'>Track ID</param>
/// <returns>True if started successfully, False if unsuccessful (for
example due to invalid Track ID) .</returns>

%everbridge‘@

bool StartSlewToCue (string trackId) ;
/// <summary>
/// Stops tracking the object which is currently being tracked by the
device.
/// </summary>
void StopSlewToCue () ;
}

ISlewToCue Interface

An interface to support device which can slew to cue - automatically follow a track using
PTZ. This has start/stop methods and events raised when the device starts/stops
following a track.

public interface IRelativeGeoSpatialAwareEvent
{
/// <summary>
/// Azimuth angle in decimal degrees relative to True North
/// </summary>
double? Azimuth { get; set; }
/// <summary>
/// Elevation angle in decimal degrees relative to the horizontal
plane of the
/// surface of the earth.
/// </summary>
double? Elevation { get; set; }
/// <summary>
/// Range in meters.
/// </summary>
double? Range { get; set; }
}

IRadar and IGeofence Interfaces

Interfaces to categorise two new device types; Radar devices and another interface to
define a standard Geofence object.

IRadar
/// <summary>
/// Radar Device object type
/// </summary>
public interface IRadar : IDevice
{
}

The GeofenceGeometryType enum type supports Area, Line, and Point geometry types
and, as of IPSecurityCenter 5.10, renders the associated GeofencePoints points as such.
GeoPosition provides a basic Lat, Long, Alt? (in other words, nullableable) data type for
passing WGS84 coordinates.

/// </summary>

/// A Geofence Device object

/// </summary>

public interface IGeofence : IDevice

{
/// <summary>
/// The reference identifier for the Geofence
/// </summary>

%everbridge‘@

string GeofencelId { [OperationContract] get; [OperationContract] set;

/// <summary>

/// The geometry type associate with this geofence

/// </summary>

GeofenceGeometryType GeofenceGeometryType { [OperationContract] get;
[OperationContract] set; }

/// <summary>

/// The points that delimit the boundary of the zone with the last
point being

/// connected to the first point.

/// </summary>

[System.ComponentModel .Browsable (false)]

List<GeoPosition> GeofencePoints { get; set; }

}

ISDK 3.8

ISDK 3.8 implemented IDeviceRepository Additions. The interface IDeviceRepository has
been extended with a new method ReadStale<TContract> (Guid identifier).
This allows you to use the VCM (Video Display interface) to get all device propertiesin a
single call to Connection Manager. The trade off is the properties are not live as they
would be if you used the regular Read<TContract> (Guid identifier) wherea
proxy to the live instance in Connection Manager is returned.

/// <summary>
/// Interface for repositories used for retrieving device objects.
/// </summary>
public interface IDeviceRepository : IDeviceService, IDisposable
{
/// <summary>
/// Gets a device using the identifier for the device.
/// </summary>
/// <typeparam name='TContract'>The contract type for the device
service.</typeparam>
/// <param name='identifier'>The identifier of the device.</param>
/// <returns>Returns a static version of the device with all
properties pre-cached.</returns>
[SuppressMessage ('Microsoft.Design',
'CA1004:GenericMethodsShouldProvideTypeParameter')]
TContract ReadStale<TContract>(Guid identifier);

}

%everbridge‘@

ISDK 3.9

DDK 3.9 extended the use of the x64BitCompatibilityAttribute attributeto
allow the attribute to be set at the assembly level. This must be used to signify that the
connector supports running in a 64-bit processes.

NOTE: NOTE: If the x64BitCompatibilityAttribute is applied to an assembly,
then it is assumed the connector only supports 64-bit unless accompanied by the
x86CompatibilityAttribute onthe assembly. All connectors with no
x64BitCompatibilityAttribute attribute onthe assembly are assumed to have the
x86CompatibilityAttribute and runin 32-bit processes. This means thereis no
requirement to update existing connectors. The effect of the
x64BitCompatibilityAttribute attribute onadriver assembly isthat it allows the
driver support devices to work in a 64-bit Connection Manager (new to IPSecurityCenter
5.13) and, unless accompanied by the x86CompatibilityAttribute, thedriver
support devices will not work within the standard 32-bit Connection Manager.

x64BitCompatibilityAttribute Attribute
The x64BitCompatibilityAttribute hasthe following classes and assemblies.
o Class - Applied to Video Control/Device class in order for the device to be hosted
within a 64-bit VCM. Only required if not applied to the assembly.

o Assembly - Applied to drivers that support running in 64-bit processes (both within
VCM and within Connection Manager)

x86CompatibilityAttribute Attribute

The x86CompatibilityAttibute attribute has anassembly thatis applied to
connectors that support running in 32-bit processes (both within VCM and within
Connection Manager). It is assumed for all drivers without
x64BitCompatibilityAttribute attribute onthe assembly. It must be added to
any driver that hasthe x64BitCompatibilityAttribute attribute onthe assembly

that still supports running in a 32-bit process, otherwise the driver is assumed to be 64-bit
compatible only.

ISDK 3.10
ISDK 3.10 adds the following new features.
Logging Utility

A new logging utility allows you to change logging level on the fly and on a per device
basis.

Packaging Connector A With Dependencies Having White Spaces

Added support for packaging connector with dependencies having white spaces in the file
name (by escaping spaces).

Common Fire Panel Additions

As part of creating a template to ease fire panel development, new built-in interfaces and
enums have been added.

%everbridge‘@

Built-in Interfaces Properties

IFirePanelDevice Panelld (string)

Panelld (string)
Zoneld (string)

IFireZoneDevice

Panelld (string)
IFireSwitchDevice Zoneld (string)

Switchld (string)

Panelld (string)
Zoneld (string)
Deviceld (string)
LoopNumber (int)

IFireLoopDevice

IFireOutputTypeDevice

IFireInputTypeDevice

Enumerations

The following enumerations are available.

Enumerations Description

Events

AlarmStateChange
ConfigurationChange

OnlineStateChange

AlarmStateChange

SwitchPositionChange

OnlineStateChange
EnabledChange

(Used to notify when the device has
been disabled on the native system,
not IPSecurityCenter)

FireOutputStateChange

FireInputStateChange

Used to identify what kind of data an input is providing.

¢ Normal
Alarm State e InAlarm
e Analog
DataType
yp . Digital
e String
e Disabled
EnabledState e Enabled
. ¢ Offline
OnlineState e Online
e On
OutputState e Off

. e On
SwitchState Off

%everbridge‘@

Event Properties

The following event properties are available.
Property Description

Used to notify when a device goes into/out of alarm. Can be raised

against a Panel or a Zone device.

This event implements IGeoSpatialAwareEvent and
AlarmStateChange IGeoSpatialAwareWithAltEvent interfaces.

/// <summary>

/// Current Alarm state of the device

/// </summary>

public AlarmState AlarmState { get; set; }

Used to notify when native configuration has changed.
ConfigurationChange

Used to notify when the enabled state of the device has changed (Device
has been enabled natively, not in IPSecurityCenter). This event
implements IGeoSpatialAwareEvent and

EnabledChange IGeoSpatialAwareWithAltEvent interfaces.

/// <summary>

/// Current enabled state of the device

/// </summary>

public EnabledState EnabledState { get; set; }

Notifies about the change of value in any of the input type devices. This
event implements IGeoSpatialAwareEvent and
IGeoSpatialAwareWithAltEvent interfaces.

/// <summary>

/// Analog value provided by the device

/// </summary>

public float AnalogValue { get; set; }

/// <summary>

/// Digital value provided by the device
FireInputStateChange /// </summary>

public int DigitalValue { get; set; }

/// <summary>

/// String value provided by the device

/// </summary>

public string StringValue { get; set; }

/// <summary>

/// Type of data provided by the device

(analog/digital/string)

/// </summary>

public DataType DataType { get; set; }

%everbridge‘@

Notifies about a change of value in an output device (Beacon on/off and
soon.) This event implements IGeoSpatialAwareEvent and

FireOutputStateChange IGeoSpatialAwareWithAltEvent interfaces.

/// <summary>

/// Current state of the output

/// </summary>

public OutputState State { get; set; }

Notifies about a change in the online state of a device. This event
implements IGeoSpatialAwareEvent and

IGeoSpatialAwareWithAltEvent interfaces.

11 h
OnlineStateChange /// <summary>

/// Raised when a device's online state changes
/// </summary>
public OnlineState OnlineState { get; set; }

Notifies about a change in the position of a switch. This event
implements IGeoSpatialAwareEvent and

IGeoSpatialAwareWithAltEvent

SwitchPositionChange /// <summary>

/// Raised when a switch reports a changed position.
/// </summary>
public SwitchState SwitchState { get; set; }

ISDK 3.11
Deprecated

ISDK 3.12

ITrackSourceAwareEvent isimplemented. ITrackSourceAwareEvent isan
extended version of IGeoSpatialAwareEvent. This new event interface allows a
device which does not generate tracks to raise a track-related event and still provide the
Track Source Device so the correct track can be put into an alert state if this event causes
an alert-state alarm.

/// <summary>

/// Defines an event which is raised in relation to a track on the map, but

/// is raised by a different device than the track source. This event
provides the

/// Track Source as well as the Track Identifier so the correct track can be
alerted.

/7

/// It is expected that the event populates the geo-spatial properties of
the event

/// based on the location of the track causing the event.

/7

/// An example of this used would be a geo-fence raising an event when a
track has

/// approached/entered/exited it, and the track may need to be alerted along
with the

%everbridge‘@

/// geo-fence itself. The track identifier and the identifier of the radar
generating
/// the track are included in the event so IPSecurityCenter can correctly
identify the
/// associated track.
/// </summary>
[DesignerVisibleEventInterface]
[DisplayName (DeviceConstants.ResourcePath,
"DisplayNameITrackSourceAwareEvent", typeof (ITrackSourceAwareEvent))]
[Description (DeviceConstants.ResourcePath,
"DescriptionITrackSourceAwareEvent", typeof (ITrackSourceAwareEvent))]
public interface ITrackSourceAwareEvent : IGeoSpatialAwareEvent
{
/// <summary>
/// The identifier of the device which is generating the track
/// </summary>
[CategoryGeoSpatial]
[DisplayName (DeviceConstants.ResourcePath,
"DisplayNameITrackSourceAwareEventTrackSourceDevice",
typeof (ITrackSourceAwareEvent))]
[Description (DeviceConstants.ResourcePath,
"DescriptionITrackSourceAwareEventTrackSourceDevice",
typeof (ITrackSourceAwarekEvent))]
[DevicelIdentifier (typeof (IDevice))]
Guid TrackSourceDevice { get; set; }
/// <summary>
/// The identifier of the track which created the event
/// </summary>
[CategoryGeoSpatiall
[DisplayName (DeviceConstants.ResourcePath,
"DisplayNameITrackSourceAwareEventTrackId", typeof (ITrackSourceAwareEvent))]
[Description (DeviceConstants.ResourcePath,
"DescriptionITrackSourceAwareEventTrackId", typeof (ITrackSourceAwareEvent))]
string TrackId { get; set; }
}

ISDK Event Interfaces

Connector device events may need to implement some standard interfaces. These
standard interfaces are defined in the assembly, CNL. IPSecurityCenter.Driver.

Implementing an Event Interface in Connector Designer

1. InToolbox, select Event Interface shape and drag into the workspace.

2. Click the Event Interface shape, select the Interface Type from the list.
3. InToolbox, click Event to Event Interface connector.

4. Using the connector, connect the desired event to Event Interface shape.

%everbridge‘@

The following sections list the current set of known Event interfaces and their expected

use.

Event Interface

IAccessEvents

IDoorEvents

IPositionAwareEvent

Description Properties
Deprecated - DO
NOT USE
Deprecated - DO
NOT USE
Some of the properties
are optional allowing
nullable values as some
subsystems may not
provide all the
coordinates.
e double? X - optional
X coordinate, the
valid values are
between 0.0 and 1.0
e double?Y -optional
Used when the Y coordinate, the
device reports valid values are
event with between 0.0 and 1.0
Schematic position '« double? Z - optional
available: X,Y, Z, Z coordinate,

denotes the floor
within a multi-floor
building. Z-value is
set on a Location, so
that trails with a
matching z-value are
plotted on that
location

e double? Heading -
optional direction
coordinate, angle
relative to the
vertical, not used in
Control Center yet.

e double? Speed -
value reported by
the 3rd party SDK, if
this is unknown,
Control Center

Heading, Speed,
and Positional
Reference
Identifier. Typically
, applicable for
radar-like systems
which detect
tractable targets.

Example

Raising driver eventina
driver.

OnTraceSchematicEvent (new
TraceSchematicEventArgs (t
his)
{
X = trace.PositionX,
Y = trace.PositionY,
PositionalReferencelde
ntifier = 1,

)i

%everbridge‘@

calculates the value
automatically based
on positions
reported previously

e int
PositionalReferencel
dentifier - represents
the coordinate
systemin use,
currently the only
valid valueis 1

Some of the properties
are optional and
consequently are
nullable values as some
subsystems may not

An extended provide all the

version of coordinates.
IPositionAwareE e double? X-optional
vent X coordinate, the

valid values are Raising dri -
between 0.0 and 1.0 | Raisingdriver eventina

dUse.d when tpe double? Y - optional driver.
evice rfepor S Y coordinate, the
event with

Schematic position Valld Values are OnTraceSchematicEvent (new

between 0.0 and 1.0 TraceSchematicEventArgs (t

ITrackablePositionAwa avalla.ble: XY, Z, double? Z - optional | his)
rekEvent Heading, Speed, Z coordinate, {
Positional denotes the floor TrackId =
Reference T . trace.Id. ToStrlng ()‘ ,
s within a multi-floor X = trace.PositionX,
|dentifier, and building. Z-value is Y = trace.Positiony,
Trackld. set on a Location, so . EgsitioTalReferenceIde
that trails with a m;)l,. T
Typically, matching z-value are
applicable for plotted on that
radar-like systems location
which detect e double? Heading -
tractable targets. optional direction

coordinate, angle
relative to the
vertical, not used in
IPSC yet.

e double? Speed -

%everbridge‘@

Used when the
device reports
event with
Geographic
position available:
Latitude,
Longitude,
Heading, Speed,
and SRID.

IGeoSpatialAwareEvent

Typically,
applicable for
radar-like systems
which detect
tractable targets.

value reported by
the 3rd party SDK, if
this is unknown,
IPSC will calculate
the value
automatically based
on positions
reported previously
e int
PositionalReferencel

dentifier - represents

the coordinate
systemin use,
currently the only
valid valueis 1

e string Trackld -
unique target/track
identifier

Some of the properties
are optional and
consequently nullable
as some subsystems
may not provide all the
coordinates.

e double? Latitude -
optional
geographical
coordinate, the valid
values are between -
90.0 and 90.0

e double? Longitude -
optional
geographical
coordinate, the valid
values are between -
180.0 and 180.0

e double? Heading -
optional geographic
direction coordinate,
the angle from the
geographic North,
the valid values are
between 0.0 and

Raising driver event
AlertGeoSpatialAlarmin
Geospatial Alert driver.

OnAlertGeoSpatialAlarmEve
nt (new
AlertGeoSpatialAlarmEvent
Args (this,
e.DateTimeOfAlarm)
{

SourceSystem =
e.SourceSystem,

SourceId
e.Sourceld,

Latitude
e.Latitude,

Longitude =
e.Longitude,

Description =
e.Description,

Url = e.Url,

TypeOfAlarm =
e.TypeOfAlarm,

DevicelId =
e.Deviceld,

SpatialReferenceld
entifier =
SpatialReferenceldentifie

1))

%everbridge‘@

ITrackableGeoSpatial

AwareEvent

An extended
version of

IGeoSpatialAwar
eEvent

Used when the
device reports
event with
Geographic
position available:
Latitude,
Longitude,
Heading, Speed,
SRID, and Trackld.

180.0, not used in
Control Center yet
double? Speed -
value reported by
the 3rd party SDK, if
this is unknown,
Control Center
calculates the value
automatically based
on positions
reported previously
int
SpatialReferencelde
ntifier - use 4326 for
longitude/latitude
(based on World
Geodetic System
[WGS84)). A Spatial
Reference System
Identifier (SRID) is a
unique value used to
unambiguously
identify projected,
unprojected, and
local spatial
coordinate system
definitions.

double? Latitude -
optional geographical
coordinate, the valid
values are between -
90.0 and 90.0
double? Longitude -
optional geographical
coordinate, the valid
values are between -
180.0 and 180.0
double? Heading -
optional geographic
direction coordinate,
the angle from the
geographic North,
the valid values are

OnTraceUpdatedEvent (new
TraceUpdatedEventArgs (thi
s)
{
TrackId =
trace.Id.ToString (),
SpatialReferenceldenti
fier = 4320,
Latitude =
trace.PositionLatitude,
Longitude =
trace.PositionLongitude,

1)

%everbridge‘@

ITrackSourceAware

Event

Typically,
applicable for
radar-like systems
which detect
distinct target
movements, each
target is identified
by Track ID which
isdisplayedin
Control Center
maps as an object
with a trail path.

An extended
version of

IGeoSpatialAwareE

vent

Used when the
device reports
event with
Geographic
position and a
source device for
the track: Latitude,

between 0.0 and
180.0, not used in
IPSC yet

double? Speed - value
reported by the 3rd
party SDK, if this is
unknown, Control
Center calculates the
value automatically
based on positions
reported previously
int
SpatialReferencelden
tifier - use 4326
(based on World
Geodetic System
[WGS84]) for
longitude/latitude. A
Spatial Reference
System ldentifier
(SRID) is a unique
value used to
unambiguously
identify projected,
unprojected, and
local spatial
coordinate system
definitions.

string Trackld -
unique target/track
identifier

double? Latitude -
optional geographical
coordinate, the valid
values are between -
90.0 and 90.0
double? Longitude -
optional geographical
coordinate, the valid
values are between -
180.0 and 180.0
double? Heading -
optional geographic

OnEnteringEvent (new
EnteringEventArgs (this,
track.CurrentPosition.Eve
ntTime)

{

Trac
kId =
track.FriendlyTrackId,

Long
itude =

track.CurrentPosition.Lon
gitude,

Lati
tude =
track.CurrentPosition.Lat

%everbridge‘@

Longitude,
Heading, Speed,
SRID, Trackld and
TrackSourceDevice

Defines an event
whichis raised in
relation to a track
onthe mapbutis
raised by a
different device
than the track
source. This event
provides the Track
Source as well as
the Track Identifier
so the correct track
can be alerted. It is
expected that the
event populates
the geo-spatial
properties of the
event based on the
location of the
track causing the
event. An example
of this used would
be a geo-fence
raising an event
when a track has
approached/entere
d/exited it, and the
track may need to
be alerted along
with the geo-fence
itself. The track
identifier and the
identifier of the
radar generating
the track are
included in the
event so Control
Center can
correctly identify

direction coordinate,
the angle from the
geographic North,
the valid values are
between 0.0 and
180.0, not used in
IPSC yet

double? Speed - value

reported by the 3rd
party SDK, if this is
unknown, IPSC will
calculate the value
automatically based

on positions reported

previously
int

SpatialReferencelden

tifier -use 4326
(based on World
Geodetic System
[WGS84]) for
longitude/latitude. A
Spatial Reference
System Ildentifier
(SRID) is a unique
value used to
unambiguously
identify projected,
unprojected, and
local spatial
coordinate system
definitions.

string Trackld -
unique target/track
identifier

Guid
TrackSourceDevice -
the device identifier
of the device raising
the track event to
which this event is
related (the radar-
like device)

itude,

Head
ing =
track.CurrentPosition.Hea
ding,

Spat
ialReferenceldentifier =
4326,

Spee
d =
track.CurrentPosition. Spe
ed,

Trac
kSourceDevice =
track.ReportingSensor

)

%everbridge‘@

the associated
track.

When connector
event implements

ITimebarDisplay

ITimebarDisplayAlways AlwaysEvent

Event

interface, this
event appearson
Timebarin
Playback mode.

When connector
event implements

ITimebarDisplay

ITimebarDisplay OptionalEvent

OptionalEvent interface, this

event appears on
Timebar in
Playback mode

Utility Libraries
The ISDK provides a set of standard utility libraries designed to implement a fixed,
tested, implementation of standard repetitive tasks.
The resource set lives
e DDL- CNL.IPSecurityCenter.Driver.Utility.
e rootnamespace-CNL.IPSecurityCenter.Driver

The sections below outline the signature of each of these utilities. During a code
review, use of these utilities should be checked for and the review failed if they are not
used in the appropriate locations.

Driver

OrderedThreadPool provides abackground thread pool that processes work-units
(methods) in a fixed sequence.

%everbridge‘@

Driver.Editors

CollectionConverter<t>

CollectionEditor Dialog<TItem,TCollection>
CollectionEditor<TItem, TCollection, TValidator>
CollectionListViewItem<T>
DisplayIndexAttribute

IListViewValidator<T>
InvalidPropertyValueException

Localization

ShellFolders

Utility.Logging

Provides a wrapper around the Loupe Logging software that allows for dynamic, in
application modification of the logging levels provided.
See Logging Utility below for more detail and how to apply the pattern.

Utility.Net

Utility Description

Static generalized class to pull back the local domain name, device name
Address and address information.

INOTE: If IPvé is active that address may be returned.

The expected set of functionalities required by network monitoring.

public interface INetworkMonitor : IDisposable
{
event EventHandler ConnectionFailed;
INetwork string Address { get; set; }

. int Attempts { get; set; }
Monitor TimeSpan Interval { get; set; }
bool IsConnected() ;
void Start();
void Stop () ;
}
An extended abstract class that provides the network monitoring
functionality and just requires the user to provide a method:
rthyork public abstract bool IsConnected();
Monitor o o
which implements how the connection is tested and returns a boolean
value true when connected, otherwise false.
Although provided within the utility set, Everbridge strongly
PingMonitor recommends that such functionality is not used to determine the

availability of a sub-system. Most security policies view ‘ping’ as a
security risk and disable it as a device detection method. As a

%everbridge‘@

Port

consequence, no description of its interface or workings are provided.
If any form of ‘Ping’ monitoring is used in a driver, you MUST provide a
boolean property on the driver server to allow for the disablement of
that functionality.

Provides a method to find the first available (unused) UPD port within a
range of port values, or throw an
InvalidOperationException exception if none available.

Var PortId = Port,FindRandomFreeUdpPort (int rangeStart, int
rangeEnd)

NOTE: OS security and network policies may block the returned port
rendering it unusable. If using this method, it MUST be stated in the
provided RDIN and checks on the security policy for the port range
must be made.

Utility.Net.Sockets

A set of utility functions to provide a uniform access method to TCP data streams.

Utility

Description

Defines a default data packet terminator strategy based
defining a byte array that indicates the end of a data packet,
subsequent data is maintained in the buffer and future data
appended to the end of the buffer.

When initializing an instance of the class the following values
should be set:

DataReceivedChunk public byte[] Terminator { get; set; }
ByteTerminator public int BufferSize { get; set; }

Use the:

o Terminates property to define a byte sequence that
terminates a message packet

« BufferSize property to indicate a maximum size of byte
array to maintain (defaults to 1024 bytes)

Event object raised when a terminated data packet has been
received

DataReceivedEvent | [serializable]

Args

public sealed class DataReceivedEventArgs :
EventArgs
{
private byte[] m data;

%everbridge‘@

private Encoding m encoding;
public DataReceivedEventArgs (byte[] data, string
source, Encoding encoding)
{
this.m data = data;
this.m encoding = encoding;
this.Source = source;
}
public byte[] GetData() => this.m data;
public string Source { get; private set; }
public override string ToString() =>
this.m encoding.GetString (this.GetData())

An
DataReceivedPass | IDataRecievedChunkStategy

Thru derived class that as the name implies just returns each data
packet received without any processing.

An event object raised when the system detects a
DisconnectedEvent disconnection event from a data source, the event contains
Args any exception information that is associated with the
disconnection.

A fully defined server listening class for which the user needs to

. provide, or register to the following:
HandleClient . , , , ,
public HandleClientConnection (Encoding encoding)

Connection public event EventHandler<DataReceivedEventArgs>
DataReceived;
public bool KeepLooping { get; set; }

Defines the interface for providing a incoming data packet
received strategy that can be applied to an incoming data
IDataReceived stream, before message packet events are raised.

ChunkStrategy public HandleClientConnection (Encoding encoding)
public event EventHandler<DataReceivedEventArgs>
DataReceived;
public bool KeepLooping { get; set; }

Definition of the minimum functionality required for a TCP
client connection implementation.

public interface ITcpClientWrapper : IDisposable
{
event EventHandler<EventArgs> Connected;
ITcpClientWrapper event EventHandler<DisconnectedEventArgs>

Disconnected;

event EventHandler<DataReceivedEventArgs>
DataReceived;

string HostAddress { get; }

int Port { get; }

Encoding Encoding { get; }

%everbridge‘@

ITcpServer

TcpClientWrapper

TcpServer

bool IsConnected { get; }

void Send(string data);

void Send(byte[] data);

void Connect (string hostAddress, int port);

void Connect (string hostAddress, int port,
Encoding encoding) ;

IDataReceivedChunkStrategy
DataReceivedChunkStrategy { get; set; }

void Disconnect () ;

}

Define the standard set of methods and events that should be
implemented for a TCP server object.

public interface ITcpServer

{

event EventHandler<DataReceivedEventArgs>

DataReceived;
void Start (int port, Encoding encoding) ;
void Stop () ;
void SendMessage (byte[] message) ;
IDataReceivedChunkStrategy
DataReceivedChunkStrategy { get; set; }
event EventHandler Connected;
event EventHandler Disconnected;
event Action<string> ConnectionFailure;

}

An implementation of the Utility defined interface, if no
IDataReceivedChunkStrategy

is defined it uses the utility defined default of pass through.
Otherwise, the user needs to define the
Address/Port/Encoding for the connection and listen to the
appropriate events.

Implementation of multi-port listening server. Allows the user
to register the following events and process messages as
appropriate. If no IDataReceivedChunkStrategy is
defined it uses the utility defined default of pass through.

public event EventHandler Connected;

public event EventHandler Disconnected;

public event Action<string> ConnectionFailure;
public event EventHandler<DataReceivedEventArgs>
DataReceived;

public IDataReceivedChunkStrategy
DataReceivedChunkStrategy { get; set; }

%everbridge‘@

Utility.OperationScheduler

When an integration has a set of operations or states it runs through this utility provides a
scheduling capability to create the list of operations, and run through them monitoring
their state until completion.

Utility Description

The base class of an operation for the scheduler to execute.
The user should override the following two methods to provide the
functionality to execute:

public abstract Operation Clone() ;
public abstract void Execute() ;

. and set the following values, either during object initialisation or by
Operation direct manipulation of the properties

protected Operation(string id, int timeout)

protected Operation(string id, int timeout, Scenario
parentScenario)

public int Timeout { get; set; }

public string Id { get; set; }

public bool Success { get; set; }

public Scenario ParentScenario { get; set; }

Operator The actual class/object that works through each of the provided
Scheduler operational scenarios to exercise the required functionality.

A wrapper class to hold the set of operations and their sequence for
implementation.

ScenarioEventArgs

Event raised when a scenario operation, or complete scenario has
completed.

public class ScenarioEventArgs : EventArgs
{
public string ScenarioId { get; private set; }
public bool CompletedSuccessfully { get; private set; }
public ScenariokEventArgs (string scenariold, bool
completedSuccessfully)
{
this.ScenarioId = scenariold;
this.CompletedSuccessfully = completedSuccessfully;
}

Scenario

}
ScenarioStatus

An enumerate returned by the operation Scheduler to indicate current
status, the enumerate values are descriptive of their meaning and are
not covered separately.

%everbridge‘@

public enum ScenarioStatus
{

OperationCompleted,
AbortScenario,
ScenarioCompleted,
ScenarioFailed,
ScenarioTimeout,
Error,

Utility.Patterns
BitArithmeticHelper

A group of operations to allow for the manipulation of byte data.

public static class BitArithmeticHelper
{
public static void SetNthBit (byte[] array, int bitNo)
public static void ResetNthBit (byte[] array, int bitNo)
public static bool CheckNthBit (byte[] array, int bitNo)
public static bool CheckNthBit (byte b, int bitNo)
public static string ByteArrayToString (byte[] array)
public static byte[] CopyArray(byte[] source, int startIndex, int
length)
public static string GetBitmapLogString (byte[] bitmap)
public static byte[] MergeArrays (byte[] arrayl, byte[] array2)
public static short ShortFromTwoBytes (byte msb, byte 1lsb) =>
BitConverter.ToIntl6 (new byte[2]
}

GenericPool<T>
Depricated - .Net now provides equivalent functionality in the collections library.

Utility. Threading

Everbridge provides a standard timer class and pattern that should be followed. This deals
with issues seen when terminating timer operations.

SafeTimer - Class

namespace CNL.IPSecurityCenter.Driver.Utility.Threading
{
public class SafeTimer : IDisposable
{
public event EventHandler Elapsed;
public event EventHandler<SafeTimerExceptionEventArgs>
ExceptionOccurred;
public SafeTimer (bool repeat, int interval, string name) {..}
public string Name { get; private set; }
public int IntervalMilliseconds { get; set; }
public bool Repeat{ get.. set.. }
public bool Enabled {get.., set .. }

%everbridge‘@

SafeTimerExceptionArgs

An exception class used in an event returned from the timer object that the user can
examine if the timer object encounters an unexpected issue.

Video

Some video connectors do not provide the capability to capture video stream frames and
save them as a still image on the system.

Everbridge provides a method that allows the user to capture a screen scrape from the
VMC display and save that. However, Everbridge recommends that, wherever possible,
the third-party supplied methods should be used in preference to this technique.

ImageCapture

This static class provides two methods that return a bitmap image object, based on the
region requested, either through a windows Rectangle object or providing the initial x, y
position and the width and height of the area to capture. Both methods require the
Windows ‘Handle’ to the display area.

namespace CNL.IPSecurityCenter.Driver.Video

{

public static class ImageCapture
{
public static Image Capture (IntPtr handle, Rectangle region)
public static Image Capture (IntPtr handle, int x, int y, int width, int
height)
}
}

Logging Utility

When developing and first deploying a device connector a significant amount of logging
information is required to help characterize behavior and identify issues, and
subsequently to deployment. If issues are reported this logging helps Everbridge identify
the issue. Control Center uses Log4Net to provide that capability.

However, this level of logging information can often overwhelm the logging system and
significantly slow the connector when the system is finally deployed.

Log4Net does provide a capability to change the logged information, but this change
effects the whole of the Connection Manager Service and requires a configuration file
change and restart of the Manager service.

This wrapper and the use of a configuration property on the connector allows for the
dynamic control of the logging level on a ‘per-device’ basis without restart, does not affect
other connectors attached to the Manager, nor does it require a restart of the Service.
This will allow for PSG/Support to set an increased logging level when initially deploying
or when an issue occurs, without changes to the connector code or Service configuration.

The usage of this wrapper is similar to how log4net is currently used, but also provides
additional features for use during initial development.

%everbridge‘@

LoglLevel

LogLevel is an enum containing 5 levels of logging.

Logging

Level Description

not used inside the logger, however, you can use this if you want to expose
Verbose | thedatayou are sending/receiving inside your communication level. You
will have to implement separate checks for this.

Debug Outputs logs of Debug, Info, Warn, Error and Fatal types

Info Info will show logs of Info, Warn, Error and Fatal types.
Warn Warn will show logs of Warn, Error, and Fatal types
Error Error will show logs of Error and Fatal types

NOTE: Note: Fatal is not part of this enum, as connectors should not exhibit fatal faults —
one that would crash the connection manager. Any fault that could be logged as fatal
needs to be completely eradicated from the connector code before being released.

LogManagerStore

LogManagerStore isastatic class that provides instances of DriverLogManager. It has
the following methods.

Signature Description

Retrieves a DriverLogManager instance.The

DriverLogManager same instance should be used throughout the entire

GetLogManager (Guid driver. It is recommended to use the server device id

devicelId) for deviceld, and pass the server id to any child
device, so that it can retrieve the same instance of
DriverLogManager.

DriverLogManager

DriverLogManager isaclassthatisused by client applications to request logger
instances. It has the following methods.

Signature Description

DriverLog Retrieves a logger of the desired type. Returns a Log object that
GetLogger(type) | canbe used in the same way as |Log of log4net.

Loads a log4net configuration file to be used while developing the
low-level code. Any calls to this method MUST be removed before
loading the connector to Control Center, otherwise the driver will
not work. This can be used to create local log files while developing,
to have full trail of actions performed by the application.

LoadLog4NetCon
fig(filePath)

%everbridge‘@

It has the following properties.

Name Type Description

Set this property to the desired logging level for all loggers

Loglevel | Loglevel managed by this DriverLogManager.

DriverLog

Log class implements a log4net interface ILog. It has the same methods, so it can be used
as a standard ILog implementation, however it has additional features beyond those of
ILog. It has the following properties.

Name Type Description

Set this property to the desired logging level for this logger.
Note: It is not recommended to change this property on the
logger. Instead, set it on DriverLogManager from which the
logger instance was retrieved.

LoglLevel Loglevel

Set this property to true if you want to output your logs to
console. This is useful if you are starting to develop the low-
level code of the driver and not using it in IPSC yet. This will
essentially perform Console.WriteLine() but using the
methods of ILog interface. After you are done with
developing the low-level code, just set this property to false
and your logs will be ready to use with the driver.

OutputToC

Bool
onsole

For other properties and methods please have a look at log4net ILog interface.

Example

CAUTION: For this to work properly, the same instance of DriverLogManager must
be used across the entire connector. To achieve this, it is suggested to use the Identifier
property of the Server device, pass that property to any child device (in a custom
constructor) and use it with LogManagerStore.GetLogManager (Guid deviceId)
togetaDriverLogManager instance.

Setting the Logging Level

Create a property on the server with name LogLevel of type
CNL.IPSecurityCenter.Driver.Utility.Logging.LogLevel Intheserver
class, overwrite the original get and set methods of this property as such

NOTE: A private variable is needed. This variable is serialized. Suggested name:
_logLevel) :

private LogLevel loggingLevel;
public new LogLevel LoggingLevel
{
get { return loggingLevel; }
set

{
if (loggingLevel != wvalue)

%everbridge‘@

_loggingLevel = value;
LogManagerStore.GetLogManager (Identifier) .LogLevel = value;

}

This updates the logging level for the specific DriverLogManager instance, whichin
turn updates the level for each logger that belongs to this manager.

Getting a Logger

To get alogger first define a private DriverLog variable. Then, inside the device’s
InitializeFields () methodassignit (_log) assuch:

Server Device

private void InitializeFields()
{
_lockInstance = new object();

_log =
LogManagerStore.GetLogManager (Identifier) .GetLogger (typeof (BriefCamServer)) ;
LogManagerStore.GetLogManager (Identifier) .LogLevel = LoggingLevel;

}

NOTE: Do not forget to set the logging level on the LogManager, otherwise logging level
will reset to debug upon every Control Center restart. Only needed on the server device.

All Other Devices

private void InitializeFields()
{
if (serverGuid == default (Guid))
{
_serverGuid = new Guid();
}
_log =
LogManagerStore.GetLogManager (_serverGuid) .GetLogger (typeof (BriefCamCamera)) ;

}

NOTE: InitializeFields () should be called inside the constructor and inside
OnDeserialization ()

Using the Logger

To log things, use this as a log4net |Log object:

e log.Debug(message) ;
e log.Debug (message, exception);
e log.DebugFormat (formatString, args);

Other methods from ILog such as Info, Warn, Error remain available.

NOTE: Since the Log4Net configuration tool is only a wrapper around log4net, using the
methods of log4net for actual logging, if the configuration file for log4net is edited to
change the internal logging level, this utility also conforms to those settings. For example,
if log4net is set to only display Error level logs, even if the utility is set to Debug level, only
Error level messages are logged.

é&everbridge@’

Example Log4Net Configuration File
This file can be used with L.oadLog4NetConfig () methodinDriverLogManager.

<?xml version="1.0" encoding="utf-8" 2>
<configuration>
<configSections>
<section name="log4net"
type="logdnet.Config.Log4NetConfigurationSectionHandler, log4net" />
</configSections>
<logé4net>
<appender name="LogFileAppender"
type="1log4net.Appender.RollingFileAppender">
<param name="File" value="Loggerl.log"/>
<lockingModel type="logdnet.Appender.FileAppender+MinimalLock" />
<appendToFile value="true" />
<rollingStyle value="Size" />
<maxSizeRollBackups value="2" />
<maximumFileSize value="10MB" />
<staticLogFileName value="false" />
<layout type="log4dnet.Layout.PatternLayout">

<param name="ConVersionPattern" value="% [$t] %-5p %c %m&n"/>
</layout>
</appender>
<root>

<level value="ALL" />
<appender-ref ref="LogFileAppender" />
</root>
</logdnet>
<startup>
<supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5"
</startup>
</configuration>

	Control Center Integrations Software Development Kit (IDSK)
	Product Naming Changes

	Setting Up Control Center ISDK Environment
	Setting up Resharper and StyleCop in Visual Studio
	Installing Control Center ISDK
	Installing Connectors in Control Center

	Control Center Connector Architecture
	Control Center Connector Structure
	Connectable Devices
	Non-Connectable Devices

	State Propagation Logic
	Standard Control Center Device States

	Video Connector Architecture
	Interactions with Microsoft Eco-system

	Using NVR Connector Template
	NVR Template Connector Terminology
	NVR Connector Template Feature List
	CCTV Device States
	Connecting NVR Connector Template to Server
	Using Alarms with NVR Connector Template.
	Use Case Scenarios

	State Machine (FSM)
	FSM in Camera Video Control Class Use Cases

	Implementing Live Video
	Using Playback
	Understanding Playback Speeds
	About CameraVideoControl.cs
	Playback Scenarios
	Understanding Seek Results Cache

	Special Cases
	Limitations

	Using Access Control Connector Template
	Access Control Template Connector Terminology
	Access Control Device States
	Device States
	Area States
	Door States
	Input States
	Output States
	Server Device Methods

	Events
	Alarm
	Fault
	Tamper

	Access Control System Connector Functionality
	Management Server
	Properties
	Methods
	Events
	Interfaces

	Access Point
	Properties
	Methods
	Events
	Interfaces
	Custom States

	Output
	Properties
	Methods
	Events
	Custom States

	Input
	Properties
	Methods
	Events
	Custom States

	Area
	Properties
	Methods
	Events
	Custom States

	Panel
	Properties
	Methods
	Events
	Reader
	Properties
	Events

	Using Fire Panel Connector Template
	Fire Panel Template Connector Structure
	Contracts
	Events
	Interfaces
	Incoming Data Model
	Panel
	Zone
	Switch
	Device

	Connector Project Structure
	Connector Name
	Connector Project Files

	Using Connector Design Surface
	Connections
	Shapes and Shape Properties
	Documentation Shape
	Documentation Shape Properties

	Video Control Shape
	Video Control Shape Properties
	Properties that only affect documentation
	Properties that affect code and documentation

	Contract Shape
	Contract Shape Properties

	Contract Property
	Method Shape
	Method Shape Properties
	Event Shape
	Event Shape Properties
	Event Property Properties

	Custom State Shape
	Custom State Shape Properties
	Built-in Interface Shape

	Built-in Interface Shape Properties
	Event Interface Shape
	Event Interface Shape Properties

	Custom ISDK Attributes
	Property Value Validation
	Contract Custom Attributes
	Other Attributes

	Toolbox
	Right Click Menu
	Update Documentation
	Documentation Generation Failures

	Device Contract
	Device Contract Class Format
	Constructor
	Private Fields

	Drivers Public Methods
	Connectable Device Contract Class Implementation
	Non-Connectable Device Contract Class implementation

	Populating Child Devices
	Populating Single Child Device
	Populating Multiple Child Devices
	Populating Large Number of Devices
	Populating Devices as a Background Task
	Populate Child Devices With a Task Cancellation

	Repopulating a Deleted Device

	Navigating Device Hierarchy
	Get Child device
	Get Parent Device
	Get Device Custom Identifier (String) from Device GUID
	Get Device from Device GUID

	Device Interfaces
	Device Connection
	Connectivity Monitoring

	Reflecting Current Device State
	Reporting Child Device States

	Custom States
	Custom State Race Condition

	Device Properties
	Supported Property Types
	Default Property Values
	Add a New Property
	Make a Property Read Only
	Saving and Persisting a Property
	Validating Property Values
	Detecting Property Value Changes

	Device Public Methods
	Device Method Name Limitations
	Device Methods Parameter Types
	Device Method Return Types
	Hide a Method From a Property Grid
	Provide a List of Items
	Operator Actions

	Connector Event Properties
	Raising Connector Events

	Reporting Geographic Location
	Exposing ENUMs
	Developing Video Connectors
	Populating Buttons and Controls
	VideoControlHost.cs
	Video Operator Action buttons
	VCM Configuration

	Video Tile Control
	Basic Features of a CCTV Connector
	Server-side
	‎Client-side

	SDK Session Implementation

	Connector Patterns
	Safe Timer
	Assembly Redirection
	Generic Pool
	Generic Poller
	Playback FSM
	Connection Monitors
	Network Socket Wrappers
	Float Comparison
	Split Camel Case
	Device Population
	Device Patters Example Code

	Connector Testing
	Connector Testing Prerequisites
	Connections and Online States
	Windows Credentials/Single Sign On
	Lifetime Manager

	Device Population
	‎ Typical Scenarios for Device Population
	Re-adding Child Devices Manually After Deletion

	Device Properties
	Device Methods
	Invoke Device Methods

	Device Events
	Creating a VRP Triggered on Device Event
	Event Properties
	Simulating Events

	Device Custom States
	Typical Usage of Custom States

	Live Video
	Presets
	Playback
	Playback Loop
	Timebar Events
	Summary of VRPs for Testing Playback
	Video Operator Actions
	Digital Zoom
	Video Export

	Test SDK Sessions/Connections Release
	Memory Leaks Detection
	Uninstall Connectors
	All Connectors - Expected Functionality
	Video Connectors - Expected Functionality

	Example FSM Implementation
	Control Center ISDK Compatibility
	ISDK Versions
	ISDK 3.0
	ISDK 3.1
	IVideoControlWithDynamicOperatorActions
	IDeviceOverridesLabel
	DeviceOverridesChildOnlineState (Attribute)

	ISDK 3.2
	SupportedPreviousDriverAttribute
	ISupportsPausingActivity
	Motion JPEG support
	ThrottledEventManager

	ISDK 3.3
	ITimebarDisplayAlwaysEvent
	ITimebarDisplayOptionalEvent

	ISDK 3.4
	IPositionAware
	IPositionAwareEvent
	IPositionAwareTracking
	ITrackablePositionAwareEvent
	PositionChangedEventArgs

	ISDK 3.5
	x64BitCompatibilityAttribute
	IVideoControlLifetimeManager (aka Lifetime Manager)
	ISwitchCamera

	ISDK 3.6
	DeviceCategoryType
	BitArithmeticHelper
	Operation Scheduler

	ISDK 3.7
	DeviceInterfaceType Additions
	IOrientationAware & IGeoSpatialOrientationAware Interfaces
	IOrientationAware
	IGeoSpatialOrientationAware

	Geo Spatial Extensions
	IGeoSpatialAwareWithAlt
	IGeoSpatialAwareWithAltEvent
	IRelativeGeoSpatialAwareEvent

	ISlewToCue Interface
	IRadar and IGeofence Interfaces

	ISDK 3.8
	ISDK 3.9
	x64BitCompatibilityAttribute Attribute
	x86CompatibilityAttribute Attribute

	ISDK 3.10
	Logging Utility
	Packaging Connector A With Dependencies Having White Spaces
	Common Fire Panel Additions
	Enumerations
	Event Properties

	ISDK 3.11
	ISDK 3.12

	ISDK Event Interfaces
	Implementing an Event Interface in Connector Designer

	Utility Libraries
	Driver
	Driver.Editors
	Utility.Logging
	Utility.Net
	Utility.Net.Sockets
	Utility.OperationScheduler
	Utility.Patterns
	BitArithmeticHelper
	GenericPool<T>

	Utility.Threading
	SafeTimer - Class
	SafeTimerExceptionArgs
	Video
	ImageCapture

	Logging Utility
	LogLevel
	LogManagerStore
	DriverLogManager
	DriverLog
	Example
	Setting the Logging Level
	Getting a Logger
	Server Device
	All Other Devices

	Using the Logger
	Example Log4Net Configuration File

