

Control Center Integration Software Development Kit
(ISDK) Guide

Everbridge Suite

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

2

Contents
Control Center Integrations Software Development Kit (IDSK) ... 5

Product Naming Changes .. 5

Setting Up Control Center ISDK Environment .. 6

Setting up Resharper and StyleCop in Visual Studio .. 6

Installing Control Center ISDK .. 6

Installing Connectors in Control Center ... 10

Control Center Connector Architecture ... 11

Control Center Connector Structure ... 12

State Propagation Logic ... 14

Video Connector Architecture ... 16

Interactions with Microsoft Eco-system .. 18

Using NVR Connector Template .. 18

NVR Template Connector Terminology ... 19

NVR Connector Template Feature List ... 19

CCTV Device States .. 19

Connecting NVR Connector Template to Server ... 20

Using Alarms with NVR Connector Template. ... 20

State Machine (FSM) ... 22

Implementing Live Video ... 23

Using Playback ... 23

Special Cases .. 27

Limitations ... 27

Using Access Control Connector Template ... 28

Access Control Template Connector Terminology .. 28

Access Control Device States.. 29

Events .. 31

Access Control System Connector Functionality ... 32

Using Fire Panel Connector Template ... 48

Fire Panel Template Connector Structure ... 49

Contracts.. 49

Events .. 50

Interfaces ... 51

Incoming Data Model .. 51

Connector Project Structure .. 52

Connector Name ... 52

Connector Project Files ... 53

Using Connector Design Surface .. 58

Connections .. 59

Shapes and Shape Properties .. 59

Built-in Interface Shape Properties .. 72

Custom ISDK Attributes .. 72

Toolbox ... 73

Device Contract ... 74

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

3

Device Contract Class Format .. 75

Drivers Public Methods ... 76

Populating Child Devices ... 77

Populating Single Child Device ... 78

Populating Multiple Child Devices .. 79

Populating Large Number of Devices .. 80

Populating Devices as a Background Task ... 80

Repopulating a Deleted Device .. 83

Navigating Device Hierarchy ... 84

Get Child device .. 84

Get Parent Device .. 84

Device Interfaces .. 86

Device Connection ... 87

Connectivity Monitoring ... 88

Reflecting Current Device State ... 89

Reporting Child Device States .. 90

Custom States ... 91

Device Properties ... 93

Supported Property Types ... 93

Default Property Values .. 93

Add a New Property .. 93

Make a Property Read Only ... 94

Saving and Persisting a Property ... 94

Validating Property Values .. 95

Detecting Property Value Changes .. 96

Device Public Methods ... 97

Device Method Name Limitations ... 97

Device Methods Parameter Types .. 97

Device Method Return Types ... 98

Hide a Method From a Property Grid .. 98

Provide a List of Items .. 98

Operator Actions .. 99

Connector Event Properties ... 99

Raising Connector Events .. 100

Reporting Geographic Location ... 100

Exposing ENUMs .. 101

Developing Video Connectors .. 101

Populating Buttons and Controls ... 102

Video Tile Control ... 106

Basic Features of a CCTV Connector .. 107

SDK Session Implementation ... 108

Connector Patterns ... 108

Safe Timer ... 108

Assembly Redirection .. 109

Generic Pool .. 110

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

4

Generic Poller ... 110

Playback FSM .. 111

Connection Monitors ... 111

Network Socket Wrappers .. 111

Float Comparison .. 111

Split Camel Case .. 112

Device Population ... 112

Device Patters Example Code .. 113

Connector Testing ... 115

Connector Testing Prerequisites .. 115

Connections and Online States ... 116

Device Population ... 119

Device Properties .. 121

Device Methods ... 121

Device Events .. 122

Device Custom States .. 124

Live Video ... 125

Test SDK Sessions/Connections Release .. 132

Memory Leaks Detection ... 133

Uninstall Connectors ... 133

All Connectors - Expected Functionality ... 134

Video Connectors - Expected Functionality .. 135

Example FSM Implementation ... 145

Control Center ISDK Compatibility ... 153

ISDK Versions ... 155

ISDK Event Interfaces .. 179

Implementing an Event Interface in Connector Designer .. 179

Utility Libraries.. 186

Driver .. 186

Driver.Editors .. 187

Utility.Logging ... 187

Utility.Net ... 187

Utility.Net.Sockets .. 188

Utility.OperationScheduler ... 191

Utility.Threading .. 192

Logging Utility .. 193

LogLevel ... 194

LogManagerStore .. 194

DriverLogManager ... 194

DriverLog .. 195

Example ... 195

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

5

Control Center Integrations Software
Development Kit (IDSK)
Control Center is a PSIM software-based integration and management platform. It
connects and manages disparate building and security technologies such as video
surveillance, life critical systems, radar, analytics, HVAC, PIDS, GPS tracking and GIS
mapping.

The Control Center Integration Software Development Kit (ISDK) is a set of programs and
related files that enable you to develop new connectors that let Control Center
communicate with specific security devices in your security solution.

The Control Center connector allows you to implement API and protocol functions
implemented by a specific security device, providing you with the ability to control and
monitor that device in Control Center. This allows you coordinated control and
monitoring of disparate devices through Control Center, improving performance of your
security solution.

Product Naming Changes
The following table describes product name changes.

Previous Name New Name

IPSecurityCenter
From version 5.25 onwards, IPSecurityCenter was renamed
Control Center.

DDK
From version 5.30 onwards, Driver Development Kit was renamed
Integrations Software Development Kit.

Driver From version 5.30 onwards, drivers were renamed connectors.

Addon From version 5.30 onwards, addons were renamed extensions.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

6

Setting Up Control Center ISDK
Environment
The following software must be installed on the machine where you are developing your
driver and where you are going to install Control Center ISDK.

CAUTION: Uninstall any old versions before installing new versions.

• Visual Studio. Make sure the following is installed as part of Visual Studio:
o VS 2019 Entity Framework Powertools
o VS 2019 DSL

• Reshaper (latest version)
• StyleCop for Resharper

Setting up Resharper and StyleCop in Visual Studio
To do this:

1. From Visual Studio, select Resharper > Manager Options.
2. Add layers for:

o CNL.Resharper
o CNL.StyleCop

3. Uncheck the StyleCop.StyleCop extension.
4. Setup the Visual Studio Reshaper context menus by selecting, Resharper >

Options > Keyboards & Menus and deselect Hide overridden Visual
Studio option.

Installing Control Center ISDK
To install Control Center ISDK :

1. Make sure your system meets the requirements, see Setting Up Control Center
DDK Environment.

2. Close all instances of Visual Studio.
3. Browse to the location of your Control Center ISDK installation package
4. Double-click Everbridge.ControlCenter.ISDK.Install.msi. The Control Center

Integrations SDK Setup Wizard displays.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

7

5. From Welcome, select Next.

6. From End-User License Agreement, select I accept the terms in the License
Agreement.

7. Select Next.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

8

8. From Product Features, select the way you want features to be installed.

NOTE: The wizard prompts you to close Visual Studio, if you have Visual Studio
open, as you cannot proceed with the installation if Visual Studio is open.

9. Select Next.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

9

10. From Destination Folder, you can either accept the default installation folder or
select Change and browse to a new location.

11. Select Next.
12. From Ready to install Control Center Integrations SDK, select Install.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

10

13. Once Control Center Integrations SDK is installed, select Finish to close the
Control Center Integrations SDK Setup Wizard.

Installing Connectors in Control Center
An overview of the process for installing device drivers into a Control Center solution, is
described below.

1. The device driver is installed using the Device Driver Manager option within the
System Configuration window. The driver package is then sent to the Server
service.

2. The Server service receives and loads the newly installed device driver and then
informs the Notification service of the update.

3. The Notification service then notifies the Connection Manager that a new device
driver is available for download.

4. Once the Connection Manager has downloaded the new device driver, it instructs
the Notification service that the new driver has been loaded and read for use.

5. The Notification service then notifies all clients in the solution that a new driver
has been loaded.

6. Any clients without a copy of the new device driver download the new driver from
the Server service.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

11

Control Center Connector Architecture
Connectors integrate with various 3rd party systems (aka subsystems).

Each connector is released as a driver package (a file with .ipscdriver extension). Driver
package contains:

• Driver DLL
• ISDK libraries
• 3rd party SDK files
• log4Net DLL to log messages

All the driver packages are loaded by Connection Manager services. Everbridge
recommends that you have multiple Connection Manger services, with one Connection
Manager service per driver.

After driver package is installed, it is copied into two folders on a PC hosting Connection
Manager service:

• C:\ProgramData\Everbridge\ControlCenter\Connection

Manager\Default\Packages - driver package copies
• C:\ProgramData\Everbridge\ControlCenter\Connection

Manager\Default\Extracted - extracted (unzipped) driver packages

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

12

Control Center Connector Structure
All devices consist of the following:

NOTE: The states, properties, events and methods that a device has depends on the type
of device.

Concept Description

Types The type of device.

States
The state of the device. For example, camera states may include
Online, Offline, Failed, Warning, Connecting and so on.

Properties The properties you may need to use on a device.

Events The events you can action on a device from your driver.

Methods The commands a driver can send to a subsystem device.

Each Control Center connector defines one or more Control Center device types.

Notes:

• Each device type describes a 3rd party entity:
o physical device
o service
o server
o physical/logical 3rd party entity (input, output, LED and so on)

• Each Control Center device has properties, methods (actions), and events.
See About Devices for more information.

• Control Center devices can be connectable. This means a Control Center device
can create a connection to a 3rd party server or an individual device.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

13

Connectable Devices

Connectable devices have properties that store the 3rd party device connection details.
For example, IP address, port number, username, password and so on. Everbridge
recommends that drivers have only one connectable device connecting to the main 3rd
party server. A connectable device connects and authenticates via the 3rd party server
when a Control Center user enables the device. See About Installing Drivers for more
information about enabling devices.

Once connected, the device goes to Online state . If the device fails to
connect or loses connection, the devices goes to Failed state.

To disconnect, a Control Center user must disable the server device. The driver logs out
from the 3rd party server and disconnects, and the server device goes to Disabled

state .

Non-Connectable Devices

Other non-connectable devices are usually created automatically by the main server
device, once the driver connects to the subsystem. Within Control Center, a server device
is called a parent device and the automatically created devices are called child
devices. Non-connectable devices do not have connection properties.

When a child device is enabled, it does not connect to a subsystem directly but uses the
existing connection session created by the parent device.

The driver checks the child device's current status in the subsystem and does the
following:

• If the device is available in the subsystem and the device is healthy (in other words,
in a working state, connected, with no faults), it should be in an Online

state .
• If the device is unavailable (in other words, it is disabled in the subsystem or

removed from the subsystem configuration), it should be in a Failed state, with a
description that describes the reason for the failure. For example, Device not
found.

• If the device is available but it is faulty, it should be in a Failed state with a state
description describing the reason for the fault.

• If the device is available and it supports custom states (see Custom States), it
should go to the correct custom state matching the actual device state in the
subsystem.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

14

State Propagation Logic
It is important to understand how device states propagate between parent and child
devices.

When a connectable device (typically a server device) changes its state, its child devices
go to the same state (including the state icon and the state description).

Standard Control Center Device States

In Control Center, the current state of the device is displayed.

The following table describes Control Center device states and their meaning.

State Icon When this state occurs Meaning

Disabled

Device is disabled by a user

• Connectable devices -
device is disconnected from
subsystem and will not raise
any events and no methods
can be triggered on the
device.

• Non-connectable devices
(child devices) - device
behavior is ignored by
Control Center. It will not
raise any events and no
methods can be triggered.

Offline

Connection Manager service
stopped or crashed

Connection Manager is offline.

Note: do not use this state
represent offline devices.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

15

Online

• Connectable devices:
o Device was previously

disabled and is now enabled
and connected

o Device was disconnected
and has automatically
reconnected.

• Non-connectable devices:

o Device was prviously
disabled and is enabled and
parent device is connected.

o Device is enabled. There
was a fault on the
corresponding subsystem
device and the fault was
removed. For example,
camera was reconnected.

• Connectable devices - the
driver has successfully
connected and
authenticated with the
remote subsystem server
using the connection details
on the device.

• Non-connectable devices -
the devices is healthy (no
faults) and it is configured in
the subsystem.

Failed

• Connectable devices. Driver
cannot connect to subsystem
or lost connection with the
subsystem

• Non-connectable devices:

o There is a fault on the
device

o This device is not found on
the subsystem

o Parent device has lost
connection to the
subsystem

• Connectable devices -
driver cannot connect to
subsystem server or lost
connection with the server:
there can be number of
issues:
o SDK is not installed
o invalid connection

details
o faulty remove server

• Non-connectable (child
devices)-

o There is a fault on the
device (e.g. camera is
disconnected)

o This device is not found
on the subsystem
(subsystem
configuration changed
so this device was
removed or disabled)
▪ Parent device has

lost connection to
the subsystem

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

16

Warning

Non-connectable child devices -
enable the device while the
parent device is disabled

Do not confuse Warning state
with Failed state. Warning
state should not be raised by
the driver itself, but by
Connection Manager in
standard scenarios like, for
example, parent device is
disabled.

Connecting

Connectable devices - enable a
previoulsy disabled server device

Device is currently attempting
to connect to remote
subsystem server

There are exceptions to this rule.

• Disabled devices remain in Disabled state.
• if a child device is also a connectable device, it does not set its states according to

the parent device. In other words, the state will not propagate from a connectable
parent device to a connectable child device.

• If a driver has a multi-level parent-child hierarchy (for example, Server → Recorder
→ Camera), the states do not propagate automatically from the parent to a 'leaf'
(the device on the lowest level). It only propagates one level down, to an immediate
child device.

• You have applied the property DeviceOverridesChildOnlineState to the child
device when, as the name implies, state propagation is suspended and you need to
manage the state of the child devices.

The following table describes the default state propagation rules.

NOTE: Sometimes a connector can override some of these.

Server Device State Resulting Child Device State

Disabled
Warning (the device's parent has been
disabled)

Online Online

Connecting No Change

Failed Failed

Custom No Change

Video Connector Architecture
Video connectors are different to non-video drivers. A connector that can display video
has its package loaded both into a Control Center server and a Control Center client.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

17

On a Control Center server side, the connector package is used by 2 services:

• A video driver is hosted by a Connection Manager service, like all the non-video
connectors. This connector instance is responsible for:

o Monitor connectivity and state of all subsystem devices
o Receive events and alarms from the subsystem
o Optionally manage the native alarms: acknowledge or close them
o Reflect on configuration changes if the subsystem can report it
o Get camera snapshot by time stamp from a visual response plan (VRP). See

Control Center Reference Guide for more information.)
o Select a PTZ camera preset (from a VRP)

• A video connector is also hosted by a Video Export service. This connector instance
is handling video export functionality, export a recorded video from a given camera
to a file.

Control Center client runs a separate Windows process called Video Control Manager (or
VCM). The connector is hosted by a VCM on a Control Center client. This connector
instance is responsible for:

• Displaying live video feeds
• Displaying playback feeds
• PTZ and Preset functionality for PTZ cameras
• Saving video snapshots
• Optional extra features (depending on the subsystems available capabilities):

o Change video resolution
o De-warp camera image
o Audio in/out
o Digital zoom

VCM configurations can vary and can be set for each Control Center client machine.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

18

Interactions with Microsoft Eco-system
The core infrastructure of Control Center Connection Manager uses the following
Microsoft technologies:

• .Net 4.5
• .Net 4.7.2
• Windows Communications Foundation (WCF)
• Microsoft Messaging Queue (MSMQ)
• Microsoft SQL Server
• C# programming Language

You can use other technologies and versions of .Net that are compatible with this
infrastructure, but the documentation supplied with the connector (in other words, RDIN)
must document the required technologies and that you must install them on every system
that the connector is installed on.

Using NVR Connector Template
The NVR Connector template defines standard functionality for a Control Center CCTV
subsystem. The NVR connector template makes it faster and easier for you to develop and
test your CCTV connectors.

To use the template, create a new project in Visual Studio and select NVR Template as
your project type.

Following is the NVR Connector Template designer diagram.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

19

NVR Template Connector Terminology
The NVR connector template has the following terminology.

 CCTV Term
NVR Connector

Template Term
Description

NVR/DVR Recording Server
Recording device manager recordings of one or
more video cameras.

Device/asset
Disabled

Deactivated
Devices/assets disabled in the Recorder are shown
in Deactivated custom state in Control Center.

Device/Asset Asset A physical or logical entity in CCTV subsystem.

Alarm Alarm
Alarm that can occur on a video camera or an
input. (This is not a Control Center alarm).

Fault/Failure Fault
Device malfunction that can occur on any CCTV
asset including recorders.

Tamper Tamper Camera was tampered with.

NVR Connector Template Feature List
The NVR Connector Template provides the following features.

• Live Video
• PTZ
• Playback: Seek: Playback Loop
• Events: Fault, Alarm, Tamper, Video Analytic events

CCTV Device States
The following table describes how the common CCTV device states and how they are
displayed in Control Center.

Scenario State Description Main GUI
System Configuration
GUI

Device online, no
faults/alarms

Online (Empty)

Camera Offline Failed Offline

Device with Fault Failed Fault

Device in Alarm
(no faults)

Alarm Alarm

Device in Alarm
and Fault

Failed Alarm, Fault

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

20

Connecting NVR Connector Template to Server
The following diagram describes how, using the NVR Connector Template, the connector
establishes connection directly to video recorders (DVRs/NVRs).

NOTE: The diagram assumes only one connection is made to the same recording server
(NVR) from every Control Center Connection Manager service. If you create multiple
instances representing the same recording server, the connection session is share across
the multiple instances. Secondly, if mulitple cameras are displayed from the same
recording server, the connection to the server is shared across the VCM process where
the connector is hosted on Control Center client.

Using Alarms with NVR Connector Template.
Cameras and Inputs can receive Alarm events. The NVR Connector Template assumes
that:

• Every camera/input can receive multiple alarms,
• Every alarm has a unique ID that is passed in the Alarm ID property in a Alarm

event. (This can be set as an Alarm ID text box in a CCTV Simulator).
• A camera or input has a boolean alarm state:

o True - asset in alarm,
o False - asset is not in alarm.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

21

• Devices in Control Center must always reflect the current asset alarm state. In
other words, the Control Center device must have an alarm custom state.
See CCTV Device States.

Use Case Scenarios

The following table describes some common use case scenarios.

NOTE: This table assumes the asset in question is online, enabled and no faults are
reported.

Scenario Expected Behavior Events Raised

New alarm on asset,
asset is in Alarm state

• Connector receives Alarm
event with AlarmStatus =
Start.

• Device goes to Alarm state.

1. Alarm event with property
Status is Start

2. State Change event

Alarm ends on an
asset. In other words,
the asset is not in an
Alarm state any more.

• Connector receives Alarm
event with AlarmStatus =
Stop and the Alarm state
flag on the asset reports as
False

• device goes to Online state

1. Alarm event with property
Status is End

2. State Change event

Another alarm on asset
that is already in Alarm
state. For example, it
could be a repeated
alarm or a different
alarm.

• Connector receives Alarm
event with AlarmStatus =
Start,

• device state remains
unchanged

Alarm event with property

Status is Start

(unlikely to happen)
Alarm ends while the
asset is already not in
Alarm state

• Connector receives Alarm
event with AlarmStatus =
End

• device state remains
unchanged

Alarm event with property

Status is End

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

22

State Machine (FSM)
A Video Control Machine (VCM) tile has its own state machine and API that has to be
synchronized with the Software Development Kit (SDK) video player. The SDK video
player has its own state logic. FSM helps to synchronize these two.

The FSM implementation is located in VideoControl\FSM.

FSM in Camera Video Control Class Use Cases

Below are two examples of typical use cases of the FSM in Camera Video Control

class.

1. Switch the FSM state after satisfying the following condition.

if (!_videoControl.PlayLiveVideo(out var error))

 {

 throw new FatalDriverException(error);

 }

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

23

 //assume successfully streaming live video, can switch FSM to live

Video state

 _fsm.ProcessCommand(VideoControlCommand.ShowLiveVideo);

2. Make sure certain section of code is valid for the current FSM state.

if (!_fsm.IsValidCommand(VideoControlCommand.ShowPlayback))

 {

 return;

 }

Implementing Live Video
The video control implements a Switch Camera interface to optimize displaying

a sequence of cameras on the same video tile.

The NVR connector implements a LifeTime Manager pattern to cache connections to

recorders.

Using Playback
When using playback, the NVR Connector Template assumes:

• the subsystem can search for existing recordings and return a list of playback
chunks (which allows the connector to display them on the Time bar).

• the recordings are managed by the recorder, and not by cameras, so it is possible to
show playback videos even from cameras which are currently offline.

• all the recording queries are designed passing the parameters and returning results
using UTC time, so the connector does not need to convert to/from Local Time of
the recorder. The conversions between the connector UTC time and Control
Center Client local time is done by Control Center outside of the connector.

The connector manages the playback results cache to optimize the recordings search,
similar to connectors like March Networks and HuperLab HuperVision.

The NVR Connector Template's Seek algorithm logic is that if there are no recording
chunks within 3 hours (hard-coded) from the seek time (time selected on the Time
Bar/Calendar Control or the 'Now' time when switching from Live Video), the video
control displays a No recordings found message. A Security Operator cannot manipulate
playback (play or pause) when a seek operation has failed. The Security Operator has to
try to seek again until a recording is found.

Understanding Playback Speeds

In Playback mode, implemented speeds are: -4, -2, 1, 2, 4 where 1 is a normal default
speed. In Paused mode, the implemented speeds are: -0.5, -0.2, -0.1, 0, 0.1, 0.2, 0.5.

NOTE: The speeds implemented in Video Control Simulator are not precise. In other
words, the speed x4 does not necessarily plays 4 times faster and so on.

Playback is automatically restored to default x1 speed after being paused.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

24

About CameraVideoControl.cs

CameraVideoControl.cs manages StorageTimer to automatically populate the last

time bar chunk to simulate continuous recording. This feature demonstrates a common
workaround when a third party SDK cannot supply the exact list of recordings.

The seek algorithm implemented in the CameraVideoControl class does not include

seek results validation. This is in case some SDKs return results irrelevant to the
requested seek time, as this should be done in the SDK session wrapper implementation.

Playback Scenarios

The following table describes some common playback scenarios.

Scenario Comment Expected Behavior

Display a camera after
connection to parent video
server was lost and then
restored.

The server device state may be
restored later than the
connection (depending on the
Retry Interval setting in the
recorder device), so it is possible
to successfully display video while
the parent server and the camera
still appear in Failed State.

Display video (live or play back) is the
camera is online.

Display a camera while
parent video server is
Disabled.

Due to ISDK limitation, the video
tile cannot be notified when a
parent server device is Disabled,
so the convention is to display
video if the actual recorder is
online and the camera is Enabled
and online.

Display video (live or play back) is the
camera is online.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

25

Play back time when
switching to Playback mode
and recording is in progress.

It is not practical to try rewinding
video to present time as it takes
time to record and buffer video.
The exact timing is unpredictable
as it is dependent on a recorder
model and the network speed so
rewinding to present time usually
fails.

Rewinding to a very recent time,
for example, few seconds
back, may succeed, but causes the
driver to stutter as the video
immediately plays to the end, then
tries to seek for more video, loads
only few seconds, seeks again and
so on.

To prevent this, most drivers try to
rewind to the last 15-30 seconds
instead.

Once switched to playback mode, the
camera plays from (DateTime.Now is 15
seconds).

Recorder does not bring
back recordings list or
returns them after a long
time.

The template defines a maximum
time allowed to seek, preventing
the Tile from hanging. This is
needed for SDKs that do not
implement this internally. This is
set in the Seek Timeout property
on the parent server device.

If the SDK returns no results (or fails to
rewind) after the time defined by Seek
Timeout, a No Recordings found message
is displayed.

Recording Seek algorithm -
seek for a time between two
recording chunks
a. The seek time is closer to

the previous chunk and
the chunk is longer than 5
minutes.

b. The seek time is closer to
the previous chunk and
the chunk is shorter than
5 minutes.

c. The seek time is closer to
the next chunk.

The video control should try to
play back the closest available
time to the requested seek time.

If the SDK supports the smart seek, in othr
words, finds the closest available time
itself, the outcome depends on the SDK.

The logic implemented in the NVR
Connector Template is as follows:

a. Play the latest 5 minutes of the previous
chunk:

b. Play the previous chunk from the start:

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

26

c. Play the next chunk from the start:

Seek (rewind) in progress

Native video controls may behave
differently during the rewind
process.

If the video search and rewind
process takes a long time and the
native behavior is inconsistent, it
may be required to hide the native
control from the Security
Operator, displaying an overlay
panel displaying a Seek in
progress message.

In any case, it is preferable to show
progress in the video tile during a
long seek operation

Depends on the native video control.

Seek (rewind) when a
recording is not available at
the time selected.

a. There is a recording
chunk available within 3
hours of the seek time

b. There is no recording
chunks available within 3
hours of the seek time

Usually the preferred behaviour is
to display some recording close to
the requested seek time.

a. Play back the closest chunk available. If
it is later than seek time, play from the
start. If it is earlier, play the last 5
minutes of the chunk (or from the
start, if the chunk is shorter than 5
minutes).

b. Display message No Recordings Found.
To continue, Security Operator has to
try to rewind to another time.

Understanding Seek Results Cache

The Seek Results cache stores:

• results for previous seek operations, in other words, list of recordings previously
found on the server.

• the times covered by the previous recording searches.

The Seek Results cache is needed to speed up the recording seek/rewind process. There
can be many calls to rewind the playback just by dragging a teardrop along the timebar.

The cache is cleared when a video tile is closed and when a camera is switched to another
one (for complex scenario such as: Display Live camera 1 → Switch to Playback → Switch
back to Live Video → Switch to camera 2 Live Video → Switch to Playback on camera 2).

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

27

Special Cases
For the following cases, the NVR Connector Template behavior is as follows.

• The recording server is the parent device and its name/label is defined by the user.
This means it does not get synched with the subsystem configuration (either
simulated or the real one).

• When connection to a recorder is lost and later restored, while displaying live or
playback video, the actual video may be restored before or after the states of the
camera devices are restored. This is because the states restoration is done in
server-side in Connection Manager and its timing depends on the Retry Interval
property on the recording server device where as the restoration of the video is
done in Control Center client as soon as the SDK signals the connection has been
restored.

Limitations
The NVR Connector Template has the following limitations due to limitations with the
VCM API.

1. If recordings do not exist inside the given Loop range, playback may get started on
the chunk where recordings do exist, but outside the Loop boundaries.

2. Connectors have to always:

o populate a chunk on a Time bar and
o report at least one frame time while inside Seek(DateTime) VCM method.

This is needed to be able to:

1. implement Seek while the playback is paused
2. scroll the Time bar to another time later (if the Seek time is far from the

current playback time)

The side effect of this is - the connector has to populate a fake chunk on a timebar
before the seek results are known.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

28

Using Access Control Connector Template
The Access Control Connector template (ACS Template) defines standard functionality
for a Control Center ACS Connector which makes it faster and easier for you to develop
and test your access control connectors.

To use the template, create a new project in Visual Studio and select ACS Template as
your project type.

Following is the Access Control Connector Template designer diagram.

Access Control Template Connector Terminology
The Access Control connector template has the following terminology.

ACS Term

ACS
Connector
Template
Term

Description

Door, Turnstile,
Barrier, Gate

Access Point

Any point with restricted access where badge
holders may want to access using authentication.
For example, passing a badge/fob, biometric
scanning, manual authentication and so on.

Panel/Door
Controller

Panel
Hardware with Inputs/Outputs and connected
readers.

User/Badge
Holder

Contact Person owning one or more credentials.

Badge/Card/Fob Credential
Badge, card or another means of contact
identification

Access Control
System (ACS)
Server

Management
Server

Device representing the point of connection to the
ACS server.

 Asset A physical or logical entity in ACS subsystem

Alarm Alarm Alarm that can occur on any ACS asset. When an

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

29

alarm occurs on an input, the input is set to Alarm
custom state.

Note: This is not the same as a Control Center alarm.

Input
Masked/Inhibited

Input
Masked

No alarms are detected on the input while it is in a
Masked state. To detect the alarms the masked
input needs to be unmasked.

Momentary
Unlock, REX
button pressed

Grant Access
Unlock a door (or open a barrier, depending on
access point) for a short amount of time (usually
pre-configured in the ACS).

Output Output
Physical output (usually a two-state relay) or a
logical output. It is assumed an output can be either
on or off.

Access Control Device States
An access control connector can have the following states:

• Device States
• Area States
• Door States
• Input States
• Output states

Device States

An access control connector can have the following states for most of its device types.

Scenario State State Description

Device online Online (empty)

Device offline Failed Offline

Device deactivated Deactivated Deactivated

Area States

An access control connector can have the following area states.

Scenario State State Description

Area disarmed Disarmed Armed

Area armed Armed Disarmed

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

30

Door States

An access control connector can have the following door states.

Scenario Locked Open Forced Held Disabled Device State
State
Description

default state (locked and
closed)

1 0 0 0 0 Closed
Closed,
Locked

unlocked 0 0 0 0 0 Closed
Closed,
Unlocked

unlocked and open 0 1 0 0 0 Open Open

forced and closed (usually
unexpected)

1 0 1 0 0 Failed
Forced,
Closed

Forced and Open 1 1 1 0 0 Failed Forced

held and open 0 1 0 1 0 Failed
Open too
long

forced and held open 1 1 1 1 0 Failed
Forced,
Open too
long

disabled in access control
system

x x x x 1 Deactivated Deactivated

Input States

An access control connector can have the following input states.

Alarm Masked Device State

0 0 Online

0 1 Masked

1 0 Alarm

1 1 N/A

Output States

An access control connector can have the following output states.

Scenario State State Description

Output is on On On

Output is off Off Off

Alarms

Access control assets can have alarms in Control Center. Alarms have a unique ID.

The lifecycle of an alarm in an access control system is as follows.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

31

Alarm created→ Alarm acknowledged → Alarm cleared (Removed from the access
control sub-system)

Server Device Methods

The following server device methods are implemented in the Access Control Connector
Template.

• Acknowledge Alarm
• Clear Alarm

Events
The following events are implemented in the Access Control Connector Template.

Alarm

• Alarm - event is raised when a new alarm is created (Alarm Status = Start) or when
an alarm is no longer triggered (Alarm Status = End).

• Alarm Acknowledged - event is raised when a previously raised alarm is
acknowledged.

• Alarm cleared - event is raised when a previously acknowledged alarm has been
cleared from the system.

Some example scenarios are described below.

Scenario Access Control Connector Template Behavior

ACS asset triggers an alarm
Alarm event is raised on corresponding device

with Status = Start.

The ACS asset stops triggering the
alarm

Alarm event is raised on corresponding device

with Status = End.

A Control Center operator
acknowledges the alarm

Alarm Acknowledged event is raised on the

same device that previously raised the Alarm

event.

A Control Center operator clears
the alarm

Alarm Cleared event is raised on the same

device that previously raised the Alarm

Acknowledged event.

Fault

A Fault event means there is a fault/malfunction in the ACS asset. There can be multiple
faults for an asset.

A Control Center device with a Fault appears in a Failed state, and its state includes Fault.

If an asset is deactivated or offline, the Fault state is ignored until the asset is enabled and
back online.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

32

Tamper

Tamper means the ACS subsystem has detected that someone was tampering with some
hardware. There can be different types of tampers for an asset.

A Control Center device with at least one Tamper appears in Failed state, and its state
includes Tamper.

If an asset is either deactivated or offline, the Tamper state is ignored until the asset is
enabled and back online.

Access Control System Connector Functionality
Following are the properties, methods, events and interfaces for each of the elements that
make up the Access Control System connector template.

Management Server

The following tables describe the properties, methods, events and interfaces for the
management server.

Properties

The following table describes the management server properties.

Name Type Description
Default Value &
Ranges

 Keep Alive Interval int
Time interval in seconds between
web service connectivity checks.

 Default: 10
 Min: 0
 Max: None

Device Population
Batch Size

int
Maximum devices allowed to
populate at a time.

 Default: 50
 Min: 20
 Max: 100

Simulation Mode bool
When true, the connector
simulates the subsystem instead
of connecting to a real one.

 Default: None
 Min: None
 Max: None

Log Level LogLevel Logging level of the driver.
 Default: None
 Min: None
 Max: None

ACS Simulator
Configuration

AcsConfiguration
Editable ACS simulator
configuration, only in use in
Simulation mode.

 Default: None
 Min: None
 Max: None

User Name
(ISecureDevice)

String The user name for the device.
 Default: None
 Min: None
 Max: None

Password
(ISecureDevice)

String The password for the device.
 Default: None
 Min: None
 Max: None

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

33

Timeout
(INetworkedDevice)

TimeSpan

The timeout period to use when
connecting to the physical
device. Specify a zero period of
time (00:00:00) to never timeout.

 Default: 00:01:00
 Min: None
 Max: None

Retry Interval
(INetworkedDevice)

TimeSpan

The amount of time to wait
before attempting reconnection
to a device after the connection
has timed out or failed. Specify a
zero period of time (00:00:00) to
attempt reconnection instantly
after a connection failure.

 Default: 00:01:00
 Min: None
 Max: None

IP
(INetworkedDevice)

String The IP address for the device.
 Default: None
 Min: None
 Max: None

Port
(INetworkedDevice)

Int32 The port the device listens on.
 Default: None
 Min: None
 Max: None

Methods

The following table describes the functional methods for management server.

Name Description Returns
Operator
Action

Parameters

Name Type Description
Default Value &
Ranges

Clear Alarm

Clears an
existing alarm.
An alarm can be
cleared once it
is
acknowledged.

bool False Alarm Id string
Alarm
Identifier

 Default: None
Min: None
Max: None

Acknowledge
Alarm

Acknowledges
an alarm that
has been
received.

bool False Alarm Id string
Alarm
Identifier

 Default: None
 Min: None
 Max: None

Update
Devices

Update the
devices to
match the
current
configuration
on ACS server.

bool False
Refresh
Properties

bool

synchronize
device
properties
and labels

Default: None
Min: None
Max: None

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

34

The following table describes the simulate methods for management server. These
simulate methods are used for testing and are only available in simulation mode.

Name Description Returns
Operator
Action

Parameters

Name Type Description
Default Value &
Ranges

Simulate
Online
State
Change
Event

Simulates
Online State
Change API
event

void False

Asset Type AssetType

Asset type
the event is
simulated
for, cannot
be used for
Inputs and
Outputs

 Default: None
 Min: None
 Max: None

Asset Id string

The ID of
the asset
event is
raised for.

Panel Id string

The panel
the asset is
on, use only
for Readers
and Access
Points

Online bool
The online
state to be
simulated

Simulate
Server
Online
State
Change

Simulates
ACS server
Online State
Change API
event

void False Online bool
The online
state to be
simulated

 Default: None
 Min: None
 Max: None

Simulate
Asset
Enabled
Event

Simulates
Asset
Enabled API
event,

void False

Asset Type AssetType

Asset type
the event is
simulated
for

 Default: None
 Min: None
 Max: None Asset Id string

The ID of
the asset
event is
raised for

Panel Id string
The panel
the asset is

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

35

on: used for
Readers,
Access
Points,
Inputs and
Outputs

Enabled bool
The enabled
state to be
simulated

Simulate
Alarm

Simulates
Alarm

void False

Asset Type AssetType

Asset type
the event is
simulated
for

Default: None
Min: None
Max: None

Asset Id string

The ID of
the asset
event is
raised for

Panel Id string

The panel
the asset is
on: used for
Readers,
Access
Points,
Inputs and
Outputs

Description string
Event
description

Alarm Id string
Alarm
Identifier

Alarm
Status

AlarmStatus Alarm state

Simulate
Fault
Event

Simulates
Fault API
event

void False

Asset Type AssetType

Asset type
the event is
simulated
for

 Default: None
 Min: None
 Max: None Asset Id string

The ID of
the asset
event is
raised for

Panel Id string
The panel
the asset is

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

36

on: used for
Readers,
Access
Points,
Inputs and
Outputs

Description string
Event
description

Fault Status AlarmStatus Fault state

Simulate
Tamper
Event

Simulates
Tamper API
event

void False

Asset Type AssetType

Asset type
the event is
simulated
for, can
select Panel,
Access
Point,
Reader,
Input

 Default: None
 Min: None
 Max: None

Asset Id string

The ID of
the asset
event is
raised for

Panel Id string

The panel
the asset is
on: used for
Readers,
Access
Points and
Inputs

Description string

Tamper
Status

AlarmStatus
Tamper
state

Simulate
Access
Denied
Event

Simulates
Access
Denied API
event

void False

Access
Point Id

string

The ID of
the access
point event
is raised for Default: None

 Min: None
 Max: None

Panel Id string

The panel
the access
point
belongs to

Reason string The reason

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

37

for the
access
denial

First Name string
Contact
first name

Last Name string
Contact last
name

Contact Id string
Contact
Identifier

Credential
Number

string
Credential
used to gain
access

Description string
Event
description

Credential
Id

string
The
Credential
ID

Simulate
Access
Granted
Event

Simulates
Access
Granted API
event

void False

Access
Point Id

string

The ID of
the access
point event
is raised for

 Default: None
 Min: None
 Max: None

Panel Id string

The panel
the access
point
belongs to

First Name string
Contact
first name

Last Name string
Contact last
name

Contact Id string
Contact
Identifier

Credential
Number

string
Credential
used to gain
access

Description string
Event
description

Credential
Id

string
The
Credential
ID

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

38

Simulate
Door
Forced
Event

Simulates
Door
Forced API
event,
works only
in
Simulation
mode

void False

Access
Point Id

string

The ID of
the access
point event
is raised for

 Default: None
 Min: None
 Max: None

Panel Id string

The panel
the access
point
belongs to

Description string
Event
description

Alarm
Status

AlarmStatus Alarm state

Simulate
Door Held
Event

Simulates
Door Held
API event

void False

Access
Point Id

string

The ID of
the access
point event
is raised for

 Default: None
 Min: None
 Max: None

Panel Id string

The panel
the access
point
belongs to

Description string
Event
description

Alarm
Status

AlarmStatus Alarm state

Simulate
Duress
Event

Simulates
Duress API
event

void False

Access
Point Id

string

The ID of
the access
point event
is raised for

 Default: None
 Min: None
 Max: None

Panel Id string

The panel
the access
point
belongs to

Credential
Id

string
The
Credential
ID

Contact Id string
Contact
Identifier

Credential
Number

string
Credential
used to gain
access

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

39

Simulate
Input
Masked

Simulates
Input
Masked

void False

Input Id string

The ID of
the Input
event is
raised for

 Default: None
 Min: None
 Max: None

Panel Id string
The panel
the Input
belongs to

Masked bool

Set to:

True - mask,

False -
unmask

Simulate
Output
State
Change

Simulates
Output
State
Change

void False

Output Id string

The ID of
the Output
event is
raised for Default: None

 Min: None
 Max: None Panel Id string

The panel
the Input
belongs to

State
OnOff
Status

Output
state

Simulate
Door
Event

Simulates
Door
common
API event
(locked,
unlocked,
open,
closed)

void False

Access
Point Id

string

The ID of
the access
point event
is raised for

 Default: None
 Min: None
 Max: None

Panel Id string

The panel
the access
point
belongs to

State
Simulated
Access
PointState

Access point
state

Simulate
Area Event

Simulates
Area armed
or disarmed
API event

void False
Area Id string

The ID of
the area
event is
raised for

 Default: None
 Min: None
 Max: None

Armed bool Area state

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

40

Events

The following table describes the properties for the Custom State Changed
(RaiseCustomStates) event.

Name Type Description

Interface
Identifier

Guid
Gets the identifier of the interface that has changed
state

Custom State ICustomState The state that the device has changed to

Message String
Gets the error message, if any, relating to the state
change

Is Child State
Change

Boolean
Indicates whether the state change applies only to non-
networked devices connected to the interface
identified by the Interface Identifier property

Device Identifier Guid The identifier of the device that raised the event

Date DateTime The UTC date and time the event was raised

Interfaces

The management server has the following interfaces:

• ISecureDevice
• INetworkedDevice
• IRaiseCustomStates

Access Point

The following tables describe the properties, methods, events, interfaces, and custom
states for access point.

Properties

Access Point has the following properties.

Name Type Description
Default Value &
Ranges

ID string Unique identifier Default: None
 Min: None
 Max: None Parent ID string The parent device ID

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

41

Methods

Access Point has the following methods.

Method Description Returns

Lock Door (ILockableDoor) Lock Door Boolean

Unlock Door
(ILockableDoor)

Unlock Door Boolean

Grant Access
(IGrantAccess)

Grant Access Boolean

Events

Access Point has the following events.

Event Description
Properties

Name Type Description

Access
Denied

Access to the
access point was
denied

Reason string
The reason for the access
denial

First Name string Contact first name

Last Name string Contact last name

Contact Id string Contact Identifier

Credential
Number

string
Credential used to gain
access

Description string Event description

Credential ID string The Credential ID

Access
Granted

Access was
granted to the
access point

First Name string Contact first name

Last Name string Contact last name

Contact Id string Contact Identifier

Credential
Number

string
Credential used to gain
access

Description string Event description

Credential ID string The Credential ID

Forced
Access Point was
forced open

Alarm Status AlarmStatus The alarm state

Description string Event description

Held
Access point was
held open for too
long

Alarm Status AlarmStatus The alarm state

Description string Event description

Duress Duress was Credential ID string The Credential ID

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

42

signaled on the
access point

Contact Id string Contact Identifier

Credential
Number

string
Credential used to gain
access

Tamper
Tamper state
change

Alarm Status AlarmStatus The alarm state

Description string Event description

Locked
The access point is
locked

n/a

Unlocked
The access point is
unlocked

n/a

Open
The access point
has been opened

n/a

Closed
The access point
has been closed

n/a

Fault Fault state change
Alarm Status AlarmStatus Fault state

Description string Event description

Disabled
Disabled state
change

Failure
Status

AlarmStatus Failure state

Alarm
Alarm state
change

Alarm ID string Alarm ID

Alarm Status AlarmStatus Alarm state

Alarm
Acknowledg
ed

Alarm has been
acknowledged

Description string Event description

Alarm ID string Alarm ID

Description string Event description

Alarm
Cleared

Alarm has been
cleared from the
system

Alarm ID string Alarm ID

Description string Event description

Interfaces

Access point has the following interfaces

Name Description

ILockableDoor Interface for a door that can be locked

IGrantAccess Device that supports granting access

Custom States

Access point has the following custom states.

• Door closed
• Door open

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

43

Output

The following tables describe the properties, methods, events, and custom states for
output.

Properties

Output has the following properties.

Name Type Description
Default Value &
Ranges

ID string Unique identifier Default: None
 Min: None
 Max: None Parent ID string The parent device ID

Methods

Output has the following methods.

Name Description Returns
Operator
Action

Parameters

Name Type Description
Default Value &
Ranges

On
Switch the
output on

bool False n/a

Off
Switch the
output off

bool False n/a

Pulse

Switches the
output on for a
short period of
time

bool False Order PulseOrder

The pulse
order (on,
then off or
vice versa)

 Default: Done
 Min: None
 Max: None

Timed
Activate
Output

Switches the
output on for a
given period of
time

bool False

Activati
on Time

int
 Default: None
 Min: 1
 Max: None

Status OnOffStatus
 Default: None
 Min: None
 Max: None

Events

Output has the following events.

Event Description
Properties

Name Type Description

Fault Fault state change
Alarm Status AlarmStatus Fault state

Description string Event

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

44

description

Disabled Disabled state change
Failure
Status

AlarmStatus Failure state

Alarm Alarm state change
Alarm ID string Alarm ID

Alarm Status AlarmStatus Alarm state

Alarm
Acknowledg
ed

Alarm has been
acknowledged

Description string
Event
description

Alarm ID string Alarm ID

Description string
Event
description

Alarm
Cleared

Alarm has been
cleared from the
system

Alarm ID string Alarm ID

Description string
Event
description

Custom States

Output has the following custom states.

• On
• Off

Input

The following table describe the properties, methods, events, and custom states for Input.

Properties

Input has the following properties.

Name Type Description
Default Value &
Ranges

ID string Unique identifier Default: None
 Min: None
 Max: None Parent ID string

The parent device
ID

Methods

Input has the following methods.

Name Description Returns Operator Action

Mask
Mask the input so no alarms are
raised

bool false

Unmask
Unmask the input so alarms can
be raised

bool false

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

45

Events

Input has the following events.

Event Description
Properties

Name Type Description

Tamper
Tamper state
change

Alarm Status AlarmStatus The alarm state

Description string Event description

Fault
Fault state
change

Alarm Status AlarmStatus Fault state

Description string Event description

Disabled
Disabled state
change

Failure Status AlarmStatus Failure state

Alarm
Alarm state
change

Alarm ID string Alarm ID

Alarm Status AlarmStatus Alarm state

Alarm
Acknowledged

Alarm has
been
acknowledged

Description string Event description

Alarm ID string Alarm ID

Description string Event description

Alarm Cleared

Alarm has
been cleared
from the
system

Alarm ID string Alarm ID

Description string Event description

Custom States

Input has the following custom states.

• Masked
• Alarm

Area

The following tables describe the properties, methods, events, and custom states for Area.

Properties

Area has the following properties.

Name Type Description
Default Value &
Ranges

ID string Unique identifier Default: None
 Min: None
 Max: None Parent ID string

The parent device
ID

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

46

Methods

Area has the following methods.

Name Description Returns Operator Action

Arm Arm the area bool false

Disarm Disarm the area bool false

Events

Area has the following events.

Event Description
Properties

Name Type Description

Fault
Fault state
change

Alarm Status AlarmStatus Fault state

Description string Event description

Disabled
Disabled state
change

Failure Status AlarmStatus Failure state

Alarm
Alarm state
change

Alarm ID string Alarm ID

Alarm Status AlarmStatus Alarm state

Alarm
Acknowled
ged

Alarm has been
acknowledged

Description string Event description

Alarm ID string Alarm ID

Description string Event description

Alarm
Cleared

Alarm has been
cleared from the
system

Alarm ID string Alarm ID

Description string Event description

Custom States

Area has the following custom states.

• Area armed
• Area disarmed

Panel

The following tables describe the properties, methods, and events for Panel.

Properties

Panel has the following properties.

Name Type Description
Default Value &
Ranges

ID string Unique identifier Default: None
 Min: None
 Max: None Parent ID string

The parent device
ID

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

47

Methods

Panel has the following methods.

Name Description Returns
Operator
Action

Parameters

Name Type Description
Default Range
& Values

Update
Devices

Update the
devices to
match the
current
configuration
on ACS Server

bool false
Refresh
Properties

bool

Synchronize
device
properties
and labels

 Default: None
 Min: None
 Max: None

Events

Panel has the following events.

Event Description
Properties

Name Type Description

Tamper
Tamper state
change

Alarm Status AlarmStatus The alarm state

Description string Event description

Fault
Fault state
change

Alarm Status AlarmStatus Fault state

Description string Event description

Disabled
Disabled state
change

Failure Status AlarmStatus Failure state

Alarm
Alarm state
change

Alarm ID string Alarm ID

Alarm Status AlarmStatus Alarm state

Alarm
Acknowledged

Alarm has been
acknowledged

Description string Event description

Alarm ID string Alarm ID

Description string Event description

Alarm Cleared
Alarm has been
cleared from the
system

Alarm ID string Alarm ID

Description string Event description

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

48

Reader

The following table describe the properties and events for Reader.

Properties

Reader has the following properties.

Name Type Description
Default Value &
Ranges

ID string Unique identifier Default: None
 Min: None
 Max: None Parent ID string

The parent device
ID

Events

Reader has the following events.

Event Description
Properties

Name Type Description

Tamper
Tamper state
change

Alarm Status AlarmStatus The alarm state

Description string Event description

Fault
Fault state
change

Alarm Status AlarmStatus Fault state

Description string Event description

Disabled
Disabled state
change

Failure Status AlarmStatus Failure state

Alarm
Alarm state
change

Alarm ID string Alarm ID

Alarm Status AlarmStatus Alarm state

Alarm
Acknowled
ged

Alarm has been
acknowledged

Description string Event description

Alarm ID string Alarm ID

Description string Event description

Alarm
Cleared

Alarm has been
cleared from the
system

Alarm ID string Alarm ID

Description string Event description

Using Fire Panel Connector Template
You can quickly and easily create Fire Panel connectors using the Fire Panel template.
Using the standard functionality provided by the Fire Panel template makes it is faster
and easier for you to develop and test your Fire Panel connector.

Illustrated below are the Fire Panel connector designer diagrams.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

49

Fire Panel Template Connector Structure
The Fire Panel connector template has the following structure.

• Receiver Server

o Fire Panel

▪ Fire Zone
▪ Fire Switch
▪ Fire Devices

Contracts
All contracts that represent physical devices implement IGeoSpatialAware and
IGeoSpatialAwareWithAlt interfaces. These are used for devices that can report their
position. The specific driver implementation may not have these, but they are supplied in
the template.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

50

Contract Description

ReceiverServer

This is the server device, to which multiple fire panels can be connected. It
is the parent device for only Fire Panels.

It contains code for populating the Panels and then asking Panels to
populate their children. The device population code conforms to latest
ISDK standards and happens asynchronously, with cancellation tokens
included.

It also contains logic for propagating device states when the fire panel
gets disabled/enabled, which is necessary due to all other devices being
children of the panel device.

It contains one method contract - UpdateDevices. This method uses the
latest data from the API and updates the labels and similar information on
every device, as well as adding any new devices.

FirePanel

This contract represents an actual Fire Panel. This device is the parent of
all the other devices, which represents the actual physical system. It
contains code that handles population of all other devices, handles
orphaned devices and propagates device states.

FireZone

This represents the concept of a zone in a fire panel. While this is not a
physical device, all fire panels include zones to which other devices are
assigned. To avoid adding another level to the structure, simply tie the
devices to zones by adding a property ZoneId to devices.

FireSwitch This contract represents the internal switches in the fire panels.

FireDevice
This is a base class for all the other loop fire devices. It is hidden as a
contract and cannot be instantiated directly. It has code that allows
setting and updating the state.

Other

The other devices only contain code that makes raising events on them
easier.

• FireOutput
• FireBeacon
• FireSounder
• FireInput
• FireSensor
• FireCallpoint

Events
Almost all events implement IGeoSpatialAwareEvent and
IGeoSpatialAwareWithAltEvent interfaces. These interfaces provide functionality that is
required by Control Center to draw the event on a specific place on the map. If the Fire

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

51

Panel system does not supply this information, any information related to these interfaces
can be left out.

Interfaces
The following interfaces are available. Each interface represents the minimum set of
properties, events and methods that each fire device must have.

Interface Description Properties Events

IFirePanelDevice

Implements

• IGeoSpatialAware
• IGeoSpatialAwareWith

Alt

PanelId

• ConfigurationChange
• OnlineStateChange
• AlarmStateChange

IFireZoneDevice
• PanelId
• ZoneId AlarmStateChange

IFireSwitchDevice

 Implements
• IGeoSpatialAware
• IGeoSpatialAwareWit

hAlt

• PanelId
• ZoneId
• SwitchId

SwitchPositionChange

IFireLoopDevice

Implements
• IGeoSpatialAware
• IGeoSpatialAwareWit

hAlt

• PanelId
• ZoneId
• DeviceId
• LoopNumber

• EnabledChange
• OnlineStateChange

IFireInputTypeDevice FireInputStateChange

IFireOutputTypeDevice FireOutputStateChange

Incoming Data Model
The template uses mocked data types. To make the development of the connector easier,
you should get as close as possible to those data types in the API implementation.

Additional data can always be added on top, but if the data model implementation uses
the same class names and property names, not much of the device population code needs
to be edited.

Panel
private class NativePanel

 {

 public string PanelId { get; set; }

 }

Zone

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

52

private class NativeZone

 {

 public string PanelId { get; set; }

 public string ZoneId { get; set; }

 }

Switch
private class NativeSwitch

 {

 public string PanelId { get; set; }

 public string ZoneId { get; set; }

 public string SwitchId { get; set; }

 }

Device
private class NativeDevice

 {

 public string PanelId { get; set; }

 public string ZoneId { get; set; }

 public string DeviceId { get; set; }

 public int LoopNo { get; set; }

 public DeviceType DeviceType { get; set; }

 }

Connector Project Structure
Everbridge recommends that your driver projects, under the driver root folder, have the
following folder structure:

• Author.CC.Driver.Manufacturer.Product.sln - the connector solution

• Author.CC.Driver.Manufacturer.Product - the connector project folder

• Author.CC.Driver.Manufacturer.Product.Spec - the connector Unit

Test project folder
• Author.CC.Driver.Manufacturer.Product.TestApp - the connector test

application folder

Connector Name
Everbridge recommends that your connector names have the following format: [
Author].CC.Driver.[Manufacturer].[Product]

• Author - the company that wrote the connector
• Manufacturer - the manufacturer of the subsystem (for example, Bosch, Milestone)
• Product - the subsystem name and optionally, its version (for example,

MAP5000, ProWatch, OnGuard and so on.)

For example, EVBG.Control Center.Driver.Bosch.BVMS

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

53

The connector name must be set as:

• the connector solution name
• the connector project name
• the default project namespace
• in Assembly settings:

o The assembly name
o The assembly title
o The assembly product

These should be set in Project → Settings in Visual Studio.

Connector Project Files
Every connector project has the following files:

• Images\ folder. Contains all the graphics used by the driver.

CAUTION: Every icon file must have its Build Action set as Embedded Resource.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

54

• Device type icons. Each device type has to have four icons of sizes: 16x16, 24x24,
32x32, and 64x64.

• Custom State icon. If the connector implements custom states, every state must
have a unique icon. All the icons must be of size 16x16. There are some standard
custom states, for example, TamperState. When using custom states, you do not
need to provide icons.

• Operator Action icons. If the connector implements any operator actions, every
such action must have a unique icon. All the icons must be of size 16x16. When
using Operator Actions available via built-in interfaces, you do not need to provide
icons.

• Video Operator Action icons. If the connector implements any Video Operator
actions, every such action must have an icon of sizes 16x16. Some Video Operator
actions may also require an icon size 32x32.

• Pictures. The following pictures need to be embedded into the auto-generated
driver documentation.

o configurationdiagram.png. A diagram describing connectivity

and integration with the subsystem. It should mark the protocols/SDKs used
and show the main connected parties and subsystem key elements and is
integrated automatically in the generated RDIN.

o deviceWizardAddServerDevice1.png and

deviceWizardAddServerDevice2.png . These show how a new server

device is added into Control Center.
o manufacturerlogo.jpg This shows the manufacturer logo and is shown

both in the documentation and in Control Center.
o productlogo.jpg This shows the product picture or logo and is shown

both in the documentation and in Control Center.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

55

• Control Center\ folder (sometimes named Contracts\ , although Everbridge

does not recommend this). This contains classes implementing device contracts
and other related types: one contract (and file) per device type

• app.config. This defines the .NET framework version and optionally can define

some dependent assemblies' versions. It can also contain web service definition,
bindings and so on that the driver connects to.

• configurationdiagram.png. A diagram describing the connectivity and

integration with the subsystem. It should mark the protocols/SDKs used and show
the main connected parties and subsystem key elements and is integrated
automatically in the generated RDIN.

• *.resx Resource files. To allow for connector localization support, all the text

constants displayed in UI must be placed in a resource file. Typical files are:
o ErrorMessages.resx. Error messages of different kind.

o [SystemName] Messages.resx. Other UI messages which are not errors.

• DeviceDefaults.cs. Implements a pattern to retrieve default device property

values.
• GlobalSuppressions.cs. A class which gets automatically written when a

developer decides to suppress a code analysis error, selecting an option, Global
suppression file instead of In source.

• Link to a key.snk file. The files used to sign the driver assembly. It must be

signed to produce a driver package. The key should be taken from the current ISDK
branch: C:\Source\DeviceDrivers\ BranchName\key.snk. For example,

for trunk drivers branch, this is C:\Source\DeviceDrivers\Trunk\key.snk

• [SystemName] CameraVideoControl.cs. Custom Control - for video drivers only:

Implementation of the video tile displayed in Control Center.
• Documentation folder including the automatically generated driver

documentation files in MS Word format.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

56

Additionally, any connector implemented with Connector Designer Visual Studio
Extension includes the following files under Design.driverdesign:

All these files and classes are automatically generated each time the Connector Design
surface is saved.

• Design.driverdesign.ContractBases.cs. Device Contracts' base classes.

• Design.driverdesign.Contracts.cs. Interfaces defining the device

Contracts.
• Design.driverdesign.CustomStates.cs. Custom states used by the driver.

• Design.driverdesign.diagram. The Driver Designer block diagram defining

the driver components: Contracts, Methods, Events, Custom States and so on.
• Design.driverdesign.Events.cs. Device events implementation.

• Design.driverdesign.Strings.resx. Resource file with all the names and

descriptions of devices, their properties, events, states and so on.
• Design.driverdesign.Events.cs. Device events implementation.

• Design.driverdesign.VideoControls.cs. Driver Video Control partial

class which should be extended by the [SystemName] CameraVideoControl.cs.

Implementation.

The driver project references:

• CNL.ControlCenter.Driver.dll. The main ISDK DLL, located in:
C:\Source\DeviceDrivers\ DDKBranch\ThirdParty\CNL\DDK

• CNL.ControlCenter.Driver.Extensions,

CNL.ControlCenter.Driver.Utility,

CNL.ControlCenter.Driver.Video.Matrix.dll. Optional ISDK file

references, located in the same folder as the main ISDK DLL.
• log4net.dll. Log4Net DLL used for logging, located in:

C:\Source\DeviceDrivers\ DDKBranch\ThirdParty

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

57

• Standard .NET minimum references set

• Other 3rd party references which may be used by the driver, located in

C:\Source\DeviceDrivers\{ISDK Branch}\ThirdParty. The available

libraries include Reactive Extensions, EntityFramework, CsvHelper.dll,
Newtonsoft.Json.dll and more.

• The references needed for the subsystem SDK to work.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

58

Using Connector Design Surface
You can design your drivers using the driver design surface.

In Solution Explorer, double-click a .driverdesign file to open the main diagram window.
From here, you can create and link:

• contracts
• methods
• events
• custom states
• ISDK interfaces
• video control
• documentation

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

59

Connections
The connections between shapes are color coded.

Color Description

Green
Used for documentation. For custom states, the connection is only
used for documentation purposes. Custom states are not constrained
to specific contracts.

Red Connects a method to a contract.

Brown Connects a video control to a contract.

Yellow Connects an event to a contract.

Grey/Blue Connects a built-interface to a contract.

Purple Connects an event interface to an event.

Shapes and Shape Properties
If a property affects documentation, it is marked green.

Documentation Shape

The documentation shape can be connected to a single contract (preferably the main
parent of all other devices). There should only ever be one of these shares per driver.
However, you are allowed to have multiples, in case you have broken the previous shape
and want to create a new one (and use the old one for guidance).

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

60

Documentation Shape Properties

Property Description

Device

Authentication
Method

Select how a connector authenticates with the subsystem. Available options
are: None, Basic, Windows, Windows Credentials.

Integration Diagram
Image

This is a relative path to the image, for example,
images\configuratinodiagram.png. The image is shown in

Connector Features. Create a diagram of how the driver interacts with the
subsystem, including protocols used and similar information.

Online State
Method

Select how a driver determines the online state of the subsystem. Available
options: None, Socket, Ping, SdkOrQueryDevice. Most drivers use

SdkOrQueryDevice.

Product Name
This is the product name. It is used on the title page of all 3 generated
documents. Do not include the manufacturer name here, only the product
name.

Driver

Default Ports

This property opens a collection editor. Inside the editor default ports that
the connector uses can be entered, along with their description and type. A
default port has these properties:

• Port - the Port number or range.
• Port Type - They type of port.

o TCP
o UDP
o Both

• Usage - what is the port used for.

Known Issues

This property opens a collection editor. A known issue has these properties:

• Item - A description of the known issue. This information is used in the
Known Limitations section in the Functionality document.

• Name - This property is only used in the Connector Designer itself, to
help recognize collection items.

Additional Details
Document (optional)

Enter a path to a .docx file that is to be included at the end of the
functionality document. The path is relative to the root directory of the
project. Do not worry about the styling in the document. RDIN style rules
are applied automatically.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

61

Installation Guide

Installation
Additional Details
Document

Enter a path to a .docx file that is to be included at the end of the Installation
Guide document starting from section 2. The path is relative to the root
directory of the project. RDIN style rules are applied automatically.
Example path:
Documentation\HoneywellProWatch_Configuration.docx

New Device Relative path to the screenshot displaying on the first page of Add Device.

Wizard Image
Wizard where user selects the new parent device type to create.
Example path: Images\deviceWizardAddServerDevice1.png

New Device Wizard
Image 2

Relative path to the screenshot displaying on the first page of the Add
Device Wizard where user completes the parent device properties.
Example path: Images\deviceWizardAddServerDevice2.png

Video

Web Client If this connector is supported by the Control Center Web Client.

Supported CC Version

Version
Enter a minimum Control Center version that is supported by the
connector. The versions should be entered separately. Start from the first
version that supports the ISDK version you are building against.

Supported Operating System

Capacity

Select whether the operating system is supported on server side, client side
or both.Options available: None. ClientSide. ServerSide

NOTE: None means the operating system is supported on both client and
server side.

Operating System
Select each operating system that is supported by the driver. Normally,
these will correspond with the operating systems supported by Control
Center, unless an ISDK does not support one of them.

Supported Hardware

Firmware Or
Software Version

Enter the firmware/software version of the hardware that is supported by
the driver.

Model

Enter each hardware device model that is supported by the driver.

CAUTION: Only enter the top-level devices, such as: Recording Servers,
Access Control Nodes and similar. There is no need to provide an infinite list
of devices.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

62

Incompatible Device

 (optional) - only add devices here if there are certain known hardware devices that are supported
by the subsystem that will not work with the driver.

Name Name/model of the incompatible device.

Supported SDK Version

Name Name of the SDK.

Sdk Installation
Location

Opens a collection editor In the editor you can add multiple install
locations. Options available: None, Client,

Server, VideoExportServer,
ConnectionManagerStreamingServer

Sdk Limitations

Opens a collection editor. In the editor you can add SDK limitations. A
limitation has these properties:

• Item - The limitation itself. The information is used in SDK Details table,
Limitations section.

• Name - This property is only used in the Driver Designer itself, to help
recognize collection items.

Version Enter the supported SDK version range.

Supported Subsystem

Additional Info
Document

Path to a document containing additional information about the subsystem.
You can insert subsystem diagrams, building blocks and explanations to
include in the Functionality document.

Description Description of the subsystem.

Document Links Any reference documents, such as SDK/API documentation and so on.

Name Name of the subsystem.

Versions Compatible subsystem versions.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

63

Video Control Shape

Video Control shape is used for video connectors. It generates VideoControl and adds a
custom attribute to the connected contract.

NOTE: In earlier releases, of the ISDK, this shape was associated with the server device.
Now, Everbridge recommends that you associate it with it an actual video device.

Video Control Shape Properties

Video Control shape properties are visible in the Video section of the Functionality
document for the device the shape is connected to.

Properties that only affect documentation

Property Description

Operator
Actions Image

A path (relative to project root) to the image that contains an image of
numbered video operator actions. If no custom operator actions have
been added, this is not necessary.

Operator
Actions
Explanation

Opens a collection editor. In the editor, you can add an explanation for
each of the video operator actions. Please order them according to the
numbering in the image.

Timebar
Population
method

How is the timebar populated. Options available:

• None - Timebar is not populated.

• AssumeStorage - Timebar is fully populated regardless of the

recordings that exist.
• QueryDevice - Timebar displays the actual recordings available.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

64

Timebar
Events

Whether the driver supports timebar events. These are available from
ISDK 3.3.

De-Warp
Support

Whether the driver supports de-warping.

Properties that affect code and documentation

Property Description

Capture Image
If true, generated video control implements ICapture interface for
saving snapshots.

Live Video
If true, generated video control implements ILiveVideoControl
interface. You can only use this if the driver supports live video.

Playback
Speeds

Playback speeds that the driver (and the SDK) supports. You can only
use this if the driver supports playback video.

Playback
Video

If true, generated video control implements IPlaybackVideoControl
interface. You can only use this if the driver supports playback video.

Presets
If true, generated video control implements IPresets interface. You can
only use this if the driver supports PTZ presets.

Ptz
If true, generated video control implements IPtz interface. You can
only use this if the driver supports PTZ presets.

Slow Motion
Speeds

Slow motion playback speeds that the driver (and the SDK) supports.

Contract Shape

Contract shape is used to define devices. It can have multiple other shapes connected.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

65

Contract Shape Properties

NOTE: Only the properties that affect documentation are described.

Property Description

Contract

Custom Attributes Allows you to apply any attributes to the contract.

Base Class

Used in case this device contract should inherit from another contract.
Base class for this contract. If a base class is provided, the Dispose
method pattern is not generated in the interface, as it should be
inherited from the base class.

Connectable Device
If true, contract implements the IConnectableDevice
interface which provides Connect and Disconnect methods as well as
Timeout and Retry Interval properties.

Hidden
If true, this device will not show up in any of the documentation. Useful
for base classes.

Name
Name of the generated class/interface. Use this name to reference the
contract in source code.

Networked Device

If true, contract implements the INetworkedDevice interface which
provides IP and Port. INetworkedDevice inherits from
IConnectableDevice, so if this is true, Connectable Device can be set to
false.

Raises Custom State
If true, methods that allow you to raise custom states are generated in
the contract.

Secure Device
If true, contract implements the ISecureDevice interface which
provides Username and Password properties.

Manufacturer

Manufacturer
Description

Description of the manufacturer that can be found in Control Center.

Manufacturer Image Image that can be found in Control Center connector information page

Manufacturer Image Caption

Manufacturer Name
For the contract that is connected to the documentation shape, this
property gets included in the title page, under manufacturer name and
title of the document.

Manufacturer Support URL that can be found in Control Center connector information page.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

66

Url

Manufacturer Url URL that can be found in Control Center connector information page.

Product

Product Category
For the contract that is connected to the documentation shape,
product category is on the title page. It may also be used for licensing

Product Description Description of the product that can be found in Control Center.

Product Image URL that can be found in Control Center connector information page

Product Image Caption

Product Name
Name of the device, used in the heading of each device in functionality
document. Examples: BVMS Camera, SymmetryDoor and so on.

Product Url URL that can be found in Control Center connector information page.

Resources

Product Image (x * x) Icons of the device that will be used in Control Center.

Video

Presets

If true, contract implements the IPresetsDevice interface which
provides PresetSelected event, PresetsSupported property and
SelectPreset method. When the PresetsSupported property is set to
True, the Video Control Tile menu includes the preset selector button.

Presets Server
If true, contract implements the IPresetsServer interface which
provides a SelectPreset method.

PTZ

If true, contract implements the IPtzDevice interface which provides
aPtzSupported property. This interface does not allow a PTZ control,
currently a PTZ control is only allowed on Video Controls. When the
PTzSupported property is set to True, the mouse cursor becomes an
arrow when hovering over Video Control. The PTZ commands are sent
to the video control on mouse clicks and scrolls.

Video Export

File Extension This property is deprecated.

Maximum Exports This property is deprecated.

Video Export This property is deprecated.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

67

Contract Property

Select a property name in the Contract shape to edit the property look and behavior.

Properties Description

Custom
Attributes

Allows to apply any attributes to the property. See Custom ISDK
Attributes.

Default
Value

Used in the documentation for default value of the property, but also sets
a default value in Control Center, through [Default Value] attribute.

Maximum
Value

ONLY used in the documentation.

Minimum
Value

ONLY used in the documentation.

Description
Description of the property. Accurate and full descriptions
areencouraged.

Display
Name

The name that is visible in documentation and in Control Center.

Category Category in which the property is visible in Control Center.

Device
Wizard

Whether to put the property into device wizard which pops up when a
new device is to be created.

Exposed
Whether to write the property as operation contract, which allows access
to the property externally through WCF.

Hidden
If true, the property will be hidden in Control Center and in
documentation.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

68

Name
Name of the generated property. Use this name to reference the property
in source code.

Read Only Whether to allow writing to the property in Control Center.

Type Type of the property.

Method Shape

Method shape is used to define methods of a device contract. They are implemented as
operation contracts and are also available through WCF.

Method Shape Properties

Property Description

Custom
Attributes

Allows you to apply any attributes to the method. See Custom ISDK
Attributes.

Description Description of the method. Accurate and full descriptions encouraged.

Display Name The name that is visible in documentation and in Control Center.

Category
Category in which the method is visible in Control Center. Normally, it
should be set to Actions category.

Exposed
Whether the method should be written as Operation Contract, to allow
access externally through WCF.

Hidden If true, the method is hidden in Control Center and in documentation.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

69

Is Operator
Action

Whether to make the method an operator action. (Show method in the
right click menu available to operators in Control Center).

Name
Name of the generated method. Use this name to reference the method
in source code.

Return Type Return type of the method.

Method Parameter Properties

Property Description

Custom
Attributes

Allows to apply any attributes to the parameter. See Custom ISDK
Attributes.

Default Value
(Not available) Used in the documentation for default value of the
property, but also sets a default value in Control Center, through
[Default Value] attribute.

Maximum
Value

ONLY used in the documentation.

Minimum
Value

ONLY used in the documentation.

Description Description of the parameter. Accurate and full descriptions encouraged.

Display Name The name that is visible in documentation and in Control Center.

Category
Category into which the parameter is placed in Control Center. Normally,
this should be set to Parameters category.

Name
Name of the generated parameter. Use this name to reference the
parameter in the code.

Type Type of the parameter.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

70

Event Shape

Event shape is used to define events that a device contract can raise.

Event Shape Properties

Property Description

Custom
Attributes

Allows you to apply any attributes to the event. See Custom ISDK
Attributes.

Name
The name of the generated event and event arguments classes. Use this
to reference the even in source code.

Description Description of the event. Accurate and full descriptions encouraged.

Display
Name

The name that is visible in documentation and in Control Center.

Event Property Properties

Property Description

Custom
Attributes

Allows you to apply any attributes to the property. See Custom ISDK
Attributes.

Description Description of the property. Accurate and full descriptions encouraged.

Display Name The name that is visible in documentation and in Control Center.

Category
The category in Control Center into which the property is placed.
Normally, this should be set to Properties category.

Name
Name of the generated property. Use this name to reference the
property in source code.

Type Type of the property.

Custom State Shape

Custom state shape is used to define a custom state. They are not limited to any contracts.
For documentation purposes. Everbridge recommends you connect custom states to
contracts to show where they are being used.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

71

CAUTION: The custom shape must be connected/mapped to a contract to show up in
documentation.

Custom State Shape Properties

Property Description

Description
Description of what the custom state represents. Used only in
documentation.

Display
Name

The name that is visible in documentation and in Control Center.

Icon
Icon of the custom state that is visible in documentation and Control
Center

Name
The name of the generated custom state class. Use this name to reference
custom state in the code.

Built-in Interface Shape

The built-in interface shape is used to allow contracts to implement interfaces that are
defined in the DDK. The interfaces can contain properties, methods and events.

Property Description

Interface Type ISDK interface selected from the list.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

72

Built-in Interface Shape Properties
None

Event Interface Shape

The Event Interface shape is used to allow events to implement interfaces that are defined
in the ISDK, such as GeoSpatial aware events. These interfaces provide events with
properties.

Event Interface Shape Properties

None

Custom ISDK Attributes
Usage of most C# attributes are allowed. For an extensive list of them see
https://docs.microsoft.com/en-
us/dotnet/api/system.attribute?redirectedfrom=MSDN&view=netframework-4.8 This
section defines the attributes that can be entered in Custom Attributes field. There are
more ISDK attributes. However, they are controlled by properties and in most cases
should not be used manually.

NOTE: You may need to specify the full namespace when using these attributes, like
this: [CNL.IPSecurityCenter.Driver.Attributes.Validation.IntegerCon
straint(MinValue = 1, MaxValue = 8)]

Property Value Validation

Custom Attribute Description

HostNameIPConstraintAttribute
Checks for either a Hostname or IP pattern before accepting the
entry.
Usage: [HostNameIPConstraint]

IntegerConstraintAttribute
Constraints an integer value.
Usage: [IntegerConstraint(MinValue = 1, MaxValue =
8)]

PortConstraintAttribute
Constraints the entry to an integer from 0 to 65535.
Usage: [PortConstraint]

StringConstraintAttribute

Constraints a string value. Usage:

[StringConstraint("Message Shown When Value

Invalid", AllowNull = false, AllowEmpty = false,

RegularExpression = @"^([1-9]|[1-9][0-9]|1[0-9][0-

9]|2[0-4][0-9]|25[0-5])")]

https://docs.microsoft.com/en-us/dotnet/api/system.attribute?redirectedfrom=MSDN&view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.attribute?redirectedfrom=MSDN&view=netframework-4.8

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

73

TimeSpanConstraintAttribute

Constraints a TimeSpan value. Usage:

[TimeSpanConstraint(MinValue = "00:00:10",

MaxValue = "00:10:00")]

Contract Custom Attributes

Custom Attribute Description

DeviceOverridesChildOnlineState
Stops Connection Manager from automatically setting all child
devices to online state when parent comes online. This allows
individual control of device states

Other Attributes

Custom Attribute Description

SupportedPreviousDriverAttribute
When there are serialization changes between driver versions, this
attribute can be used to convert objects of the old driver to the
new driver.

Toolbox
Toolbox contains a list of items that you can add to the diagram.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

74

Right Click Menu

The right click menu contains additional commands that can be executed on the
Connector Designer. Currently, there is a single extra command, but this may be extended
in the future.

Update Documentation

Running Update Documentation should generate a new xml file that can be opened using
Microsoft Word (not tested below 2010 version).

Documentation Generation Failures

Sometimes documentation generation fails. In Visual Studio 2019, if upon generating
documentation, you see errors in the Error List, or your generated xml file contains
ErrorGeneratingOutput, please restart your visual studio (all instances) and try again.

Device Contract
A device contract must be defined for every device type supported by the driver. The
contract is an interface used as the WCF service extension. A device contract is defined by
a C# interface and its implementation.

NOTE: The device types are called 'contracts' because Connection Manager exposes
WCF 'Connection Manager' service where different types are presented as the service
contracts.

A device contract is typically implemented by 3 classes:

1. Interface derived from IDevice. These classes are automatically generated by a
driver designer in Design.driverdesign.Contracts.cs. For example,

public partial interface IFusionCatalystServer : IDevice

2. Class derived from the Device DDK base class. These classes are automatically
generated by a driver designer in
Design.driverdesign.ContractBases.cs. For example,

public abstract class FusionCatalystServerBase : Device, IDisposable

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

75

3. Device class implementing the interface in step 1 and derived from the base class in
step 2. This class is written by the driver developer implementing the relevant
business logic. For example,

public class FusionCatalystServer : FusionCatalystServerBase,

IFusionCatalystServer, IDeserializationCallback

Device Contract Class Format
Constructor

You must implement a parameterless constructor to create the device manually by right-
clicking New > Device on menu.

CAUTION: Never implement protected Serialized class members as this leads to

serialization problems when new devices are populated.

Private Fields

Most private fields need to be marked as non-serialized.

[NonSerialized]

 private ILog _log;

Such fields need to be initiated not just in a constructor, but also in a special method
InitializeFields() called when the device is been deserialized when the connector

is been loaded in the Connection Manager.

For example, a typical non-connectable device contract is shown below.

[Serializable]

 [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]

 public class AccessPoint : AccessPointBase, IAccessPoint,

IDeserializationCallback

 {

 [NonSerialized]

 private ILog _log;

 //this is called when a new device is created in Control Center

 public AccessPoint()

 {

 Interfaces.Add(new DeviceInterface(DeviceInterfaceType.Door,

"Door Output", "1"));

 InitializeFields();

 }

 //this is called when device is deserialized from Database

 public void OnDeserialization(object sender)

 {

 InitializeFields();

 }

 private void InitializeFields()

 {

 //initialize any non-serialized fields here

 _log = LogManager.GetLogger("Access Point");

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

76

//subscribe to EnabledChanged to set the device to correct state

 EnabledChanged += AccessPointEnabledChanged;

 }

 }

In some special cases, usually when a device needs to persist its state even when
Connection Manager is offline, the field can be declared without the [NonSerialized]

attribute, so it will be serialized into Connection Manager database. These properties
should be initialized in constructor and not in the InitializeFields().

[Serializable]

 [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]

 public class VideoCamera : VideoCameraBase, IVideoCamera

 {

 private PresetCollection _presets;

 public VideoCamera()

 {

 _presets = new PresetCollection();

 InitializeFields();

 }

 }

Drivers Public Methods
Connect() is called when a Connectable device is Enabled in Control Center or a

Connectable device has not connected (the device has not reported Online state) during
the time period set by the Timeout property.

There are four basic elements typically present in Connect() method implementation:

1. Initialization and connection to the subsystem.
2. Get the list of relevant subsystem devices, and populate the relevant Control

Center child devices.
3. Subscribe to events and alarms.
4. Start monitoring the connection with the subsystem, if not automatically provided

by the subsystem API/SDK.

Disconnect() is called when a Connectable device is Disabled in Control Center.

Implement resources design patterns here, and not in Dispose()

Connectable Device Contract Class Implementation

1. Create a Contract on Driver Design surface.
2. Add and connect relevant Methods, Events, Custom States, and Interfaces.
3. Create device contract class.
4. Implement Connect() method.

5. Implement Disconnect() method.

6. Raise the events created in 1.
7. Implement the methods created in 1.
8. Set device states.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

77

Non-Connectable Device Contract Class implementation

1. Create a Contract on Driver Design surface
2. Add and connect relevant Methods, Events, Custom States, and Interfaces.
3. Implement device contract class.
4. Handle EnabledChanged event.
5. Raise the events created in 1.
6. Implement the methods created in 1.
7. Set device states.

Populating Child Devices
Once a connectable device has established a connection with a subsystem, the next step is
to retrieve a list of relevant physical entities (cameras, doors) or logical entities (inputs,
areas) and create Control Center devices connected to the parent device.

Devices use interfaces to connect to other devices. Each Control Center device can have a
list of interfaces.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

78

Device population needs to occur in the following scenarios:

1. Parent connectable device is Enabled and successfully connected to the
subsystem. For example, server device is connected to an NVR and needs to
populate camera devices.

2. For drivers with multi-tier device hierarchy, a non-connectable device is Enabled.
For example, in an ASC driver a Door Controller device is Enabled and needs to
populate the doors connected to this controller.

3. A standard method, Update Devices, sometimes called Repopulate Devices or
Sync Devices, is invoked on a parent device.

NOTE: Each child device Contract class must implement a parameterless Constructor,
otherwise Control Center cannot create a new device using the Device Wizard in Control
Center.

Populating Single Child Device
var customIdentifier = input.ID; //custom identifier must be unique,

typically provided by a native SDK;

 if (!Interfaces.Contains(customIdentifier))

 {

 var inputDevice = GetConnectedDevice<HuperInput>(customIdentifier);

 if (inputDevice == null)

 {

 // creating a new input device

 inputDevice = new HuperInput

 {

 Label = input.Name,

 Id = input.Id

 };

 try

 {

 // Creating the device interface and connecting it to the server

interface

 var serverInput = new DeviceInterface(DeviceInterfaceType.Other,

inputDevice.Label, customIdentifier);

 this.Interfaces.Add(serverInput);

 serverInput.Connect(inputDevice.Interfaces.First());

 }

 catch (ArgumentException ex)

 {

 _log.Error($"{IP}: Failed to populate Input device -

{ex.Message}", ex);

 }

 catch (InvalidOperationException ex)

 {

 _log.Error($"{IP}: Failed to populate Input device -

{ex.Message}", ex);

 }

 }

 }

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

79

Populating Multiple Child Devices
var newConnections = new InterfaceConnectionCollection();

 var devicesAdded = false;

 foreach (var camera in sdkCameras)

 {

 var customIdentifier = camera.ID; //custom identifier must be

unique, typically provided by a native SDK

 var cameraDevice =

GetConnectedDevice<AxisCamera>(customIdentifier);

 if (cameraDevice != null)

 {

 //The camera device already exists in the system

 _log.Info("Skipping camera {0}", camera.ID);

 //update the camera device' properties if needed and save

them by invoking OnPropertyChanged on the device

 }

 else

 {

 try

 {

 cameraDevice = new AxisCamera

 {

 Label = camera.Name

 };

 if (!Interfaces.Contains(customIdentifier))

 {

 AddToConnections(customIdentifier, cameraDevice,

newConnections);

 devicesAdded = true;

 }

 }

 catch (ArgumentException ex)

 {

 throw new

FatalDriverException(ErrorMessages.FailedToPopulateCamera.CurrentFormat(ex.Me

ssage));

 }

 catch (InvalidOperationException ex)

 {

 throw new

FatalDriverException(ErrorMessages.FailedToPopulateCamera.CurrentFormat(ex.Me

ssage));

 }

 }

 }

 // Adds all the new connections to the database in one go

 if (devicesAdded)

 {

 Interfaces.AddAndConnectRange(newConnections);

 }

 //create a new interface on parent device

 private static void AddToConnections(string customIdentifier, IDevice

device, InterfaceConnectionCollection newConnections)

 {

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

80

 if (device == null || newConnections == null)

 {

 return;

 }

 var serverInput = new DeviceInterface(DeviceInterfaceType.Video,

device.Label, customIdentifier);

 newConnections.AddAndConnect(serverInput, device.Interfaces[0]);

 }

Notes:

• If the population of devices takes significant time and you put it on a background
Task remember to provide for task cancellation if the server is taken offline.
See Populating Devices as a Background Task

• Also remember to block multiple instances of the task, if an update capability is
provided as an exposed method.

Populating Large Number of Devices
Populating many devices at once is a relatively expensive SQL operation and may get a
SQL Transaction timeout in Connection Manager. This means only part of the device
set gets populated and may lead to inconsistencies in the database. The solution is
to populate devices in small batches, so each small population transaction is successful.

Populating Devices as a Background Task
Although your development environment may have only a few devices to work against,
your production environment may have many hundreds of devices/sensors. This can lead
to the connect/population of devices taking many minutes, possibly, causing
the Connection Manager to fail the device.

A workaround is to pass the population of devices onto a background task, leave it to
complete and indicate the device as Online as soon as its connected to the subsystem
(rather than waiting until all the devices are populated).

Notes:

• if no error handling/checking is implemented in the background task then device
population can fail with no indication of the failure. In other words, not all devices
are created/populated.

• no checking of the status of background task means:

o if the device is taken offline, the background device creation task continues.
o Changing the device state rapidly (for example, pressing F12 multiple times

to enable/disable a parent device) can cause multiple background device
creation tasks to be active, leading to duplication of devices in the system.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

81

Populate Child Devices With a Task Cancellation

In the parent device class, add the following:

[NonSerialized]

 private CancellationTokenSource tokenSource;

 [NonSerialized]

 private CancellationToken cancelToken;

 [...]

 /// <summary>

 /// Connects to the physical device.

 /// </summary>

 [SuppressMessage("Microsoft.Design",

"CA1031:DoNotCatchGeneralExceptionTypes")]

 public override void Connect()

 {

 try

 {

 CheckDisposed();

 var username = DeviceDefaults.DefaultUsername(this);

 var port = DeviceDefaults.DefaultPort(this);

 [...]

 log.InfoFormat(CultureInfo.CurrentCulture,

ErrorMessages.ConnectingText, username, IP, port);

 lock (lockInstance)

 {

 Disconnect();

 //

 // Should never get to this state

 // but just in case

 //

 if (tokenSource != null)

 {

 tokenSource.Cancel();

 tokenSource.Dispose();

 }

 tokenSource = new CancellationTokenSource();

 cancelToken = tokenSource.Token;

 if (string.IsNullOrEmpty(IP))

 {

 throw new

ArgumentException(ErrorMessages.IPAddressNotSpecified);

 }

 [...]

 log.DebugFormat(CultureInfo.InvariantCulture, "Last Event

Received: {0}", LastEventReceived);

 if (RetrieveOfflineEvents &&

(!string.IsNullOrEmpty(LastEventReceived)))

 {

 Task.Run(() => GetOfflineEvents(cancelToken), cancelToken);

 }

 Task.Run(() => PopulateDevices(cancelToken), cancelToken);

 [...]

 }

 }

 catch (DeviceException ex)

 {

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

82

 log.Error(ex.Message, ex);

 OnStateChanged(DeviceState.Failed, ex.FullMessage);

 Disconnect();

 }

 catch (Exception ex)

 {

 log.Error(ErrorMessages.DeviceConnectionFailed, ex);

 OnStateChanged(DeviceState.Failed,

ErrorMessages.DeviceConnectionFailed + Environment.NewLine + ex.Message);

 Disconnect();

 }

 }

 /// <summary>

 /// Disconnects from the physical device.

 /// </summary>

 public override void Disconnect()

 {

 PropertyChanged?.Invoke(this, new

PropertyChangedEventArgs(string.Empty));

 CheckDisposed();

 log.InfoFormat(CultureInfo.CurrentCulture, ErrorMessages.Disconnecting,

DeviceDefaults.DefaultUsername(this), IP, DeviceDefaults.DefaultPort(this));

 [...]

 lock (lockInstance)

 {

 //

 // Cancel any running background task

 //

 tokenSource?.Cancel();

 [...]

 }

 //

 // and destroy the token source/token from the system

 //

 tokenSource?.Dispose();

 tokenSource = null;

 log.InfoFormat(CultureInfo.CurrentCulture, ErrorMessages.Disconnected,

DeviceDefaults.DefaultUsername(this), IP, DeviceDefaults.DefaultPort(this));

 }

 /// <summary>

 /// Populates the devices connected to the server.

 /// </summary>

 private void PopulateDevices(CancellationToken token)

 {

 try

 {

 //

 // Was cancellation already requested?

 //

 if (token.IsCancellationRequested)

 {

 log.InfoFormat("Task {0} was cancelled before waiting for

network data.", MethodBase.GetCurrentMethod().Name);

 token.ThrowIfCancellationRequested();

 }

 // // if you split the population into additional methods

remember to hand the token through to those and check

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

83

 // at each stage for termination so as to terminate the task as

quickly as possible, otherwise

 //

 // Foreach device

 // is cancelation requested?

 // break out the task

 // else

 // add device

 //

 [...]

 }

 catch(Exception ex)

 {

 //

 // report something here

 //

 [...]

 }

 }

Repopulating a Deleted Device
You can repopulate a child device that has been previously deleted. As the parent device
still has the Interface created for the deleted child device, repopulating the child device
means:

1. Create a new child device object
2. Connect the interface on the parent server to the first Interface on the new child

device:

Interfaces[customIdentifier].Connect(cameraDevice.Interface

s[0]);

var newConnections = new InterfaceConnectionCollection();

 var devicesAdded = false;

 foreach (var camera in sdkCameras)

 {

 var customIdentifier = camera.Id;

 var cameraDevice =

GetConnectedDevice<AmsCamera>(customIdentifier);

 if (cameraDevice == null)

 {

 // Create new device

 cameraDevice = new AmsCamera

 {

 Label = camera.Name

 };

 if (Interfaces.Contains(customIdentifier))

 {

 //repopulate the camera device

 Interfaces[customIdentifier].Connect(cameraDevice.Int

erfaces[0]);

 }

 else

 {

 var serverInterface = new

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

84

DeviceInterface(DeviceInterfaceType.Video, cameraDevice.Label,

customIdentifier);

 newConnections.AddAndConnect(serverInterface,

cameraDevice.Interfaces[0]);

 devicesAdded = true;

 }

 }

 //set additional device properties if needed

 }

 if (devicesAdded)

 {

 Interfaces.AddAndConnectRange(newConnections);

 }

Navigating Device Hierarchy
Get Child device
There are two methods available to get a connected child device from a parent device.

1. T GetConnectedDevice<T>(string customIdentifier) where T :

IDevice
Returns null if no connected device is found.

Example of usage: in the parent device class run:

Camera cameraDevice =

GetConnectedDevice<AccessControlController>(customId);

Runs Stored Procedure Read_DeviceChildrenByCustomIdentifier on CM Database,
selects the first child device which custom ID is as given. This means that custom ID
must be unique for its parent device, in other words, custom ID is not necessarily
globally unique.

2. T GetConnectedDevice (DeviceInterface deviceInterface) where

T : IDevice

Returns null if no connected device is found.

NOTE: This method is rarely used.

Example of usage:

Camera cameraDevice = GetConnectedDevice<Camera>(Interfaces[0]);

Get Parent Device
T GetConnectedParentDevice<T>() where T : IDevice

If the device has no parent throws NullReferenceException.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

85

Usage: in the child device class run:

var parentDevice = GetConnectedParentDevice<VideoServer>();

NOTE: if the camera has more than one parent device, the method will return the parent
added the first. This should not normally happen, but it can be achieved, for example, by

manually connecting Device Interfaces using the Manage Device Connections option in
Control Center’s System Configuration.

Get Device Custom Identifier (String) from Device GUID
private string GetCustomIdentifier(Guid deviceIdentifier)

 {

 var serviceFactory = new ServiceFactory();

 var deviceDescriptorFactory =

serviceFactory.GetService<IDeviceDescriptorFactory>();

 var deviceDescriptor = deviceDescriptorFactory.Create(deviceIdentifier);

 if (deviceDescriptor.Interfaces.Count > 0 &&

deviceDescriptor.Interfaces[0].ConnectedInterfaces.Count > 0)

 {

 return

deviceDescriptor.Interfaces[0].ConnectedInterfaces[0].CustomIdentifier;

 }

 return null;

 }

Get Device from Device GUID
Guid deviceId = ...

 var serviceFactory = new ServiceFactory();

 var deviceRepository = serviceFactory.GetService<IDeviceRepository>();

 var cameraDevice = deviceRepository.Read<NextivaCamera>(deviceId);

Check whether the device is connected to another device (checking its list of Interface
connections):

var serviceFactory = new ServiceFactory();

 var deviceDescriptorFactory =

serviceFactory.GetService<IDeviceDescriptorFactory>();

 var deviceDescriptor = deviceDescriptorFactory.Create(deviceIdentifier);

 var connectionInfo = deviceDescriptor.SimpleConnectionInformation; return

connectionInfo.Count > 0;

Find a parent device by a child device GUID (parent device on another driver)

private static Device FindParentVideoServer(Guid playbackCameraIdentifier)

 {

 var factory = new ServiceFactory();

 var descriptorFactory = factory.GetService<IDeviceDescriptorFactory>();

 DeviceDescriptor cameraDescriptor = null;

 try

 {

 cameraDescriptor = descriptorFactory.Create(playbackCameraIdentifier);

 }

 catch (NullReferenceException)

 {

 throw new ConfigurationException("Cannot find video playback camera

specified in the configuration.");

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

86

 }

 var serverIdentifier =

descriptorFactory.Create(playbackCameraIdentifier).SimpleConnectionInformatio

n[0].ParentIdentifier;

 var deviceFactory = factory.GetService<IDeviceRepository>();

 return (Device)deviceFactory.Read<IDevice>(serverIdentifier);

 }

Another example, used in any CCTV driver in Initialize() method:

private DeviceConnectionInformation _connectionInformation;

 private IVideoServer _server;

 public void Initialize(Guid deviceIdentifier, IDeviceDescriptorFactory

deviceDescriptorFactory, IDeviceRepository deviceRepository)

 {

 var cameraDescriptor = deviceDescriptorFactory.Create(deviceIdentifier);

 var connectionInformation =

cameraDescriptor.SimpleConnectionInformation.GetByParentType(typeof(IVideoSer

ver));

 _server =

deviceRepository.Read<IVideoServer>(connectionInformation.ParentIdentifier);

 }

Device Interfaces
Each Control Center device has a collection of Control Center Device
Interfaces. A Control Center Device Interface models a logical or physical connection to
another device.

It is represented in the Control Center ISDK as a DeviceInterface class. The

DeviceInterface class has the following properties:

Property C# Type

Identifer GUID

Label string

CustomIdentifier string

Type DeviceinterfaceType

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

87

Device Connection
To connect 2 Control Center devices, each device must have a Control Center
Device Interface (see Device Interfaces for more information) and there should be a
connection between the two Control Center Device Interfaces.

Notes:

• The custom identifier may not necessarily be the same on both Control Center
Device Interfaces.

• Both Control Center Device Interfaces must have the same Type (for example,
DeviceInterfaceType.Door, DeviceInterfaceType.Video and so on).

Typically, a device connection is needed when child devices are populated by a parent
server device. For example, in a VMS system, a parent device is a VMS server and a child
device is an NVR or DVR or a camera.

The following example connects 2 devices in an Access Control system. The child device is
a door.

Child Device Class

public Door()

 {

 Interfaces.Add(new DeviceInterface(DeviceInterfaceType.Door,

"Door Output", "1"));

 }

Server (Parent) Device Class

Device doorDevice = ... //either create new device or get an existing

Control Center device

 //custom Identifier must be a unique identifier typically provided

by the subsystem SDK/API

 var customIdentifier = doorId.ToString();

 var serverInput = new DeviceInterface(DeviceInterfaceType.Door,

doorDevice.Label, customIdentifier);

 this.Interfaces.Add(serverInput);

 serverInput.Connect(doorDevice.Interfaces[0]); //connect up the 2

Device Interfaces

The Interface connection is saved in Connection Manager database, in
DeviceInterfaceConnection table:

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

88

To view and manipulate Device Interface connections in Control Center

1. By expanding the Device Interfaces node in System Configuration.

2. In System Configuration, right-click on your device and select Manage Device
Interfaces.

Connectivity Monitoring
Connectable devices, in other words, Control Center devices which implement a device
interface, must implement some connectivity check logic to report when the
corresponding physical device or server is disconnected or re-connected.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

89

Reflecting Current Device State
Devices must always reflect their current state.

• On connection
• On change state event
• On re-enabling the device. Important: in Control Center 4.9 the device goes to

Online by default. To workaround this, subscribe to EnabledChanged event on

the ISDK base class device. Example:

private void InitializeFields()

 {

 EnabledChanged += MxProDevice_EnabledChanged;

 }

 protected override void Dispose(bool disposing)

 {

 if (disposing)

 {

 ...

 EnabledChanged -= MxProDevice_EnabledChanged;

 } base.Dispose(disposing);

 }

 private void MxProDevice_EnabledChanged(object sender,

EventArgs e)

 {

 if (!Enabled)

 {

 return;

 }

 //must run in a separate thread otherwise the delay won't

have any effect

 Task.Run(() =>

 {

 //resolve race condition: wait until Connection Manager

sets the device to Online state

 Thread.Sleep(DeviceEnabledDelay);

 //update the current device state

 InitDeviceState();

 });

 }

• Device was removed from the 3rd party. The corresponding Control Center device
must be in Failed state and have a description of Device doesn't exist or Device
not found. The work around is to compare the list of Control Center devices and
the list of the 3rd party devices. The .Except() LINQ method gives you the

orphaned devices. Example:

private void UpdateOrphanedDevices(IEnumerable<string>

knownDevicesCustomIds)

 {

 //all the devices which are not in the collection of

knownDevicesCustomIds don't represent any Pro-Watch entity - set to

Failure

 var orphanedCustomIds = Interfaces.Select(each =>

each.CustomIdentifier).Except(knownDevicesCustomIds);

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

90

 foreach (var customId in orphanedCustomIds)

 {

 string id;

 var deviceType =

SateonCustomIds.ParseDeviceCustomId(customId, out id);

 IDevice device = GetConnectedDevice(customId);

 var sateonDevice = device as ISateonDevice;

 if (sateonDevice != null)

 {

 sateonDevice.SetState(DeviceState.Failed,

ErrorMessages.DeviceDoesntExist);

 }

 }

 }

• Device was renamed in the 3rd party. In this scenario there are two possible
workarounds:

o If an SDK supports events about devices been renamed - automatically
rename Label property of relevant Control Center devices

o If an SDK doesn't support such events - add a separate
method UpdateDevices() which polls all the devices' current name and

properties and updates them in Control Center. Note: the device Contract
must implement the INotifyPropertyChanged interface to update

Properties

Reporting Child Device States
There are two ways of reporting child device states in Control Center ISDK.

• Find the child device Interface. Example:

var cameraInterface = Interfaces.FirstOrDefault(interf =>

interf.CustomIdentifier == deviceId);

 if (cameraInterface != null)

 {

 OnStateChanged(cameraInterface, DeviceState.Failed,

CustomErrorMessages.CameraConnectionStateDisconnected);

 }

• Get the actual child device and raise a public method on it.

o Get the device in the parent device class. Example:

var device = GetConnectedDevice<IDevice>(customId);

 if(device != null)

 {

 device.SetState(DeviceState.Failed,

ErrorMessages.DeviceNotFound);

 }

o The public method in the device Contract class:

public void SetState(DeviceState state, string message)

 {

 if (!Enabled)

 {

 return;

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

91

 }

 if (_session != null)

 {

 _log.Debug(MxProMessages.SettingDeviceState.Curren

tFormat(Label, state, message));

 }

 if (string.IsNullOrEmpty(message))

 {

 OnStateChanged(state);

 }

 else

 {

 OnStateChanged(state, message);

 }

 }

Custom States
In addition to the built-in standard states, a device can also expose custom states, for
example, 'door locked', 'zone armed'. A device can only have one current state. If a door is
set to a custom state 'door locked' it will no longer be online or failed and these states
have to be assumed.

There is no way to retain custom states information after reconnecting to a 3rd party
system if your API does not support current state polling.

NOTE: You should not store a state cache in a database as the states may become
outdated while a device is offline.

The example below implements custom states without using a connector designer
surface.

Implement a CustomStateChanged event in the device contract class.

 [field: NonSerialized]

 public event EventHandler<CustomStateChangedEventArgs> CustomStateChanged;

 private void OnCustomStateChanged(CustomStateChangedEventArgs e)

 {

 if (e == null)

 {

 throw new ArgumentNullException("e");

 }

 if (CustomStateChanged != null)

 {

 CustomStateChanged.Invoke(this, e);

 }

 }

 }

 public void RaiseCustomStateChanged(ICustomState state, string message)

 {

 if (state == null)

 {

 throw new ArgumentNullException("state");

 }

 OnCustomStateChanged(new CustomStateChangedEventArgs(Identifier,

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

92

state, message));

 }

Implement the following methods in the device contract class:

public void RaiseStateChanged(DeviceState state, string message)

 {

 OnStateChanged(state, message);

 }

Implement your Custom States - class per state

Example using System;

namespace CNL.ControlCenter.Driver.Verint.Nextiva.Ipsc.States

 {

 /// <summary>

 /// The recording off state.

 /// </summary>

 [Serializable]

 public class OfflineState : ICustomState

 {

 /// <summary>

 /// Gets the end user displayable name for the state

 /// </summary>

 public string DisplayName

 {

 get { return "Offline"; }

 }

 /// <summary>

 /// Gets the icon

 /// </summary>

 public string Icon

 {

 get { return

"CNL.ControlCenter.Driver.Verint.Nextiva.Images.CameraOfflineState.png"; }

 }

 }

 }

Custom State Race Condition

There are 3 scenarios that can cause a device state not to be updated.

• Trying to update individual child devices after a parent device goes Online.
• Re-enabling a device
• Fast state updates

To workaround this, remember the last state change on each device. If the current state
came too soon, add a time delay to let the previous state change, finish processing).

Example:

[NonSerialized]

 private DateTime _lastStateUpdate;

 private void InitializeFields()

 {

 ...

 _lastStateUpdate = DateTime.MinValue;

 }

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

93

 private void UpdateCurrentState(AcsInput<string> input)

 {

 //prevent state update race condition when adjacent state updates

arrive

 if ((DateTime.Now - _lastStateUpdate).TotalMilliseconds < 500)

 {

 _log.Debug("Input '{0}': wait for {1} msec. before state

update".InvariantFormat(Label, SateonSession.CustomStateUpdateDelayMsec));

 Thread.Sleep(SateonSession.CustomStateUpdateDelayMsec);

 }

 //set the current state here

 _lastStateUpdate = DateTime.Now;

 }

Device Properties
NOTE: You can set connector properties manually but Everbridge recommends that you
use the Design Surface.

Supported Property Types
NET types: uint, short, byte and any 64 bit type are not supported.

Custom type properties can be defined but you must provide the full type name.

Default Property Values
You can set default value property values in connector design surface, but it only works if
the custom attributes property is not set.

You can also set it manually by using the standard .NET Custom attribute.

[DefaultValue(2000)]

or use a different overload DefaultValue(type, string):

[DefaultValue(typeof(TimeSpan),"00:00:01")]

You can set a default DateTime property value. For example:

[DefaultDateTime(DateTimeOrigin.Now, DateTimeOperation.Subtract, 0, 10, 0)]

 DateTime from

 [DefaultDateTime(DateTimeOrigin.Now)]

 DateTime to

To configure the default value displayed in Device Wizard, set the value directly in the
class constructor.

Add a New Property
To manually add a property to a device, declare the type and property name, and then add
the following attribute lines above the declaration.

[DisplayName(“<Name of declared Variable>")]

 [Description {"description of what the property does/defines>"}]

 [CategoryProperties]

 <property Type> <Property name>;

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

94

Make a Property Read Only
To make a device property read only, add the Attribute to the Custom Attributes
property:

[System.ComponentModel.ReadOnly(true)]

Saving and Persisting a Property
To save a device property programmatically, the device Contract class must implement
the INotifyPropertyChanged interface:

[Serializable]

 [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]

 internal class GalaxyOutput : GalaxyOutputBase, IGalaxyOutput,

IDeserializationCallback, IGalaxyDevice, INotifyPropertyChanged

 {

 ...

 [field: NonSerialized]

 public event PropertyChangedEventHandler PropertyChanged;

 ...

 /// <summary>

 /// Raises PropertyChanged event which causes the recently updated

properties saved into Database.

 /// </summary>

 public void SaveChangedProperties(PropertyChangedEventArgs e)

 {

 if (PropertyChanged != null)

 {

 PropertyChanged.Invoke(this, e);

 }

 }

 }

Saving all the properties can be implemented like this:

public void SaveChangedProperties()

 {

 if (PropertyChanged != null)

 {

 PropertyChanged.Invoke(this, new

PropertyChangedEventArgs(string.Empty));

 }

 }

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

95

Validating Property Values
Property values should be validated in two places:

1. In code
2. In the Property Grid. Assign Custom Attributes property in the driver designer.

Examples:

o Integer:

[CNL.IPSecurityCenter.Driver.Attributes.Validation.IntegerConstra

int(MinValue=0, MaxValue=int.MaxValue)]

o String:

[CNL.IPSecurityCenter.Driver.Attributes.Validation.StringConstrai

nt("The API key must not be empty",AllowNull = false,AllowEmpty =

false)]

o IP:

[CNL.IPSecurityCenter.Driver.Attributes.Validation.StringConstrai

nt("The 'Local Address' property must be set to a valid IP4

address",

 AllowNull = false, AllowEmpty = false, RegularExpression =

@"^([1-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(\.([0-

9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])){3}$")]

o GUID:

[CNL.IPSecurityCenter.Driver.Attributes.Validation.StringConstrai

nt("The 'Recording ID' parameter must be in a form of a valid

GUID string: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",

AllowNull = false,AllowEmpty = false,RegularExpression = @"\b[a-

fA-F0-9]{8}(?:-[a-fA-F0-9]{4}){3}-[a-fA-F0-9]{12}\b")]

o TimeSpan:

[CNL.IPSecurityCenter.Driver.Attributes.Validation.TimeSpanConstr

aint(MinValue="0:0:1", MaxValue="1:0:0")]

o Port (integer):

[CNL.IPSecurityCenter.Driver.Attributes.Validation.PortConstraint

]

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

96

Detecting Property Value Changes
There is no direct way to detect device property values in the connector designer. You
must implement a property in code.

Below is some sample code taken from FusionFC4000 connector.

1. Expand the device interface (add partial class):

public partial interface IFusionCatalystWebSource

 {

 [CategoryProperties]

 [DeviceWizard]

 [DisplayName("CNL.ControlCenter.Driver.Jupiter.FC4000.Design.dr

iverdesign.Strings", "DisplayNameUrl",

typeof(IFusionCatalystWebSource))]

 [Description("CNL.ControlCenter.Driver.Jupiter.FC4000.Design.dr

iverdesign.Strings", "DescriptionUrl",

typeof(IFusionCatalystWebSource))]

 [System.ComponentModel.DefaultValue(0)]

 string Url

 {

 [OperationContract]

 get;

2. Implement the property in the device class:

[OperationContract]

 set;

 }

 }

 public class FusionCatalystWebSource : FusionCatalystWebSourceBase,

IFusionCatalystWebSource ...

 {

 private string _url;

 public override string Url

 {

 get

 {

 return _url;

 }

 set

 {

 _url = value;

 //custom code here

 }

 }

 }

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

97

Device Public Methods
Listed below are the device Public Methods.

Connect()

This method is called when a connectable device is Enabled in Control
Center or a connectable device has not connected (in other words, a
connectable device has not reported an Online state) during the time
period set by the Timeout property.

There are four basic elements typically present in Connect() method
implementation:

• Initialization and connection to the subsystem.
• Get the list of relevant subsystem devices, and populate the relevant

Control Center child device Subscribe to events and alarms.
• Start monitoring the connection with the subsystem, if not

automatically provided by the subsystem API/SDK.

Disconnect()

This method is called when a connectable device is Disabled in Control
Center, implement resources design patterns here, and not in
Dispose().

Dispose()

This method is only called when a device is deleted in Control Center (it
is not called at any other time, even when Connection Manager is
shutting down).

Device Method Name Limitations
Method display names (Display Name property) cannot include characters: '-', '/', '(', ')'

Methods with these characters cannot be called from Response Plans.

Device Methods Parameter Types
Device methods supports standard .NET types:

• int
• string
• double (shown in VRPs as Decimal)
• boolean
• DateTime

The following types are not supported:

• short
• long
• byte
• uint

Complex, 64bit and custom types are not supported.

You must never expose native SDK types in Control Center.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

98

To pass a Control Center device (for example, the ISDK device Contract) as a method
parameter, the parameter of type Guid must be defined with Custom Attribute

[DeviceIdentifier].

bool StartDecoder(

 [DeviceIdentifier(typeof(INextivaDecoder))]

 Guid decoderIdentifier,

 [DeviceIdentifier(typeof(INextivaCamera))]

 Guid cameraIdentifier);

To pass a file path as a parameter it is worth implementing access to a File Browser editor.
To do this, add the Editor Custom Attribute as follows:

[System.ComponentModel.Editor(typeof(FileBrowserEditor),

typeof(UITypeEditor))]

Device Method Return Types
Only basic .NET types are currently supported as connector device methods return types.

To return a picture:

Possible solution: return byte[] then, assign the .Image property of an Image Control on a
Control Center GUI.

Special case: Herta driver: use a Plugin to decode a picture of Base64 format.

connector methods can return a List of basic .NET types. A Response Plan then can iterate
over the list items and process them.

Hide a Method From a Property Grid
Sometimes device methods need to be hidden from the UI. Usually it is internal methods
(for example, for testing purposes) or obsolete methods which cannot be removed due to
possible Serialization problems for previously deployed connectors.

• To hide a method on connector design surface, set Hide property to true on the
method shape.

• To hide a method on connectors which do not have a connector design surface, add
the [System.ComponentModel.Browsable(false)] custom attribute to the

method definition in device interface class.

Provide a List of Items
Sometimes the connector needs to provide a list of certain items: layouts, devices, 3rd
party users and so on.

Implementation options:

1. The connector implements method GetItems() returning A C# List<>

(List<string>, List<int>, or List<supported basic type>).
2. As an option, the connector can also implement an event ItemsFound passing a

property of type List<>
3. Commissioner creates a custom GUI displaying the list in a Combobox, for

example.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

99

4. In the GUI create a VRP logic for OnLoad Event. In the event call the GetItems()

on the server VRP Variable, then store the result in another VRP Variable, then use
the Iterate Collection shape and on every iteration call .AddItem to the Combobox.

Operator Actions
A connector method can be exposed as an operator action, which means this method is
available to the user in a context menu in the display GUI. In the example below, the
Integriti Door device has three operator actions:

• Lock Door
• Timed Access
• Unlock Door

To expose a method as an operator action:

1. Set the Is Operator Action property to True
2. Chose a 16x16 unique icon to be shown for the Operator Action in the Context

Menus. Add the icon to Images\ folder of the driver project, assign Build Action to
Embedded Resource.

3. Assign the icon to the Action by setting custom attribute on the method. For
example,

[DisplayImage(DisplayImageSize.Image16x16,

@"CNL.ControlCenter.Driver.Hanwha.NVR.Images.AlarmInputOn.png",

typeof(IAlarmInputDevice))]

CAUTION: You cannot re-use the icons which were already used in this driver, for
Custom States.

If there is a requirement to provide different access levels to different actions, the
Category property should be assigned accordingly.

Connector Event Properties
You should avoid properties of type string (except the user-friendly text descriptions), and
instead use a strong typed approach if possible.

If an API sends a string property, check what the possible values are, then report it as an
enum. (String properties with undefined values should not be used because you cannot
build any rules around them in Commissioning).

You must not report unparsed, raw data as an event property unless there is a special
need for it. This is because there will be no parsing at the Commissioning stage.

You must always report timestamps as DateTime in UTC format.

Usually there is no need to report an event timestamp as a separate property.

• If the 3rd party provides the native timestamp, use the overload:
OnDoorForced(new DoorForcedEventArgs(this, nativeTimestampUtc))

• if the 3rd party doesn't provide a timestamp - use the overload:
OnDoorForced(new DoorForcedEventArgs(this)) (the event time will be
automatically assigned to DateTime.UtcNow)

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

100

You must never expose native SDK types in Control Center.

If the subsystem reports null value in an expected field of type string, set the
corresponding event property to string.Empty: event fields which are null are hidden in
Control Center which may be misleading.

Raising Connector Events
Avoid caching/serializing 3rd party alarms or events in the connector unless there is a
very good reason for it.

Avoid serializing 3rd party event ID counters (something like int _lastEventID)

Dealing with repeated alarms/events from a 3rd party system:

• If the alarms have unique IDs, track (but do not serialize) the last received ID.
• If the subsystem reports the Timestamp, you can filter out the events with

Timestamp older than the last received).
• Everbridge recommends that you cache the current devices' state and report the

Alarm only if the state changes.

NOTE: Normally if the subsystem has a problem reporting repeated events, it is a bug in
the subsystem and ideally should be fixed by the 3rd party.

Reporting Geographic Location
There are three ISDK Interfaces available:

1. IGeospatialAwareEvent to raise a geo-aware event to update dots on a map

(now deprecated).
2. ITrackableGeospatialAwareEvent. This is an extended version of

IGeospatialAwareEvent which has TrackId on it. Always use this instead of

IGeospatialAwareEvent.

3. IGeoSpatialTracking to make a Control Center device trackable (see ISS

demo driver).

CAUTION: Wherever you implement IGeospatialAware Interface, you must

implement and assign the member: int SpatialReferenceIdentifier (as defined by

spacialreference.org). Otherwise, Control Center does not plot the reported coordinates
on the map.

• Add a property Spatial Reference Identfier to device Server Contract and set a
Description: “A unique value used to unambiguously identify projected,
unprojected, and local spatial coordinate system definitions.” Default value – 4326

• Assign this ID to SpatialReferenceIdentifier property of any event

implementing IGeospatialAware

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

101

Exposing ENUMs
If a connector uses a custom enum type in its methods, events or properties, the type must
be exposed to Control Center. To do this, add a custom attribute
CNL.ControlCenter.Driver.Attributes.Description to the enum.

The following example uses CNL.ControlCenter.Driver.Attributes;

...

 [Description("Output State")]

 public enum MxProOutputActivationState

 {

 Unknown = 0,

 Activated,

 Deactivated,

 }

NOTE: There is currently no way to customize the values of the enum, so you need to
make sure they are self-explanatory.

Testing enums within Control Center:

1. Create a new VRP.
2. Create a new variable of type Enum.
3. Select the driver from the drop down list. The second drop-down field must list the

available enums.

Developing Video Connectors
You can configure a video control manager (VCM) in which to run your connectors and
display their UI component (typically a control from the target system's SDK that shows
video).

As with other components that load connectors, a VCM's primary purpose is to isolate
other processes from third-party SDK/API instability and unreliability. It has a WCF
interface, allowing clients to tell which driver to load, go to playback, and so on. Calls go
back to the client control code on another WCF interface describing state changes.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

102

The timebar shown in playback mode is owned by the VCM.

Populating Buttons and Controls
• Presets list is populated by calling GetPresets() on a camera device

implementing IPresetsDevice.
• PTZ controls are shown if the property PTZ Supported is set to true on the

displayed camera device (same for Preset controls).

VideoControlHost.cs
public bool PtzSupported

 {

 get

 {

 var ptzDevice = _displayedDevice as IPtzDevice;

 return PtzControl != null && (ptzDevice != null &&

ptzDevice.PtzSupported);

 }

 }

 public bool PresetsEnabled

 {

 get

 {

 var ptzDevice = _displayedDevice as IPresetsDevice;

 return PtzPresetControl != null && (ptzDevice != null &&

ptzDevice.PresetsSupported);

 }

 }

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

103

Video Operator Action buttons

Project: CNL.IPSecurityCenter.UI.Common

Class: TileControl.cs

public partial class TileControl : UserControl

 {

 public IList<ToolStripButton> OperatorActionButtons { get; private set;

}

 ...

 public ToolStripButton AddOperatorActionButton(string text, string

toolTip, Image image, string methodName)

 {

 var button = AddToolStripButton(text, toolTip, image);

 OperatorActionButtons.Add(button);

 return button;

 }

 }

VCM Configuration

VCM configuration allows you to assign driver video controls to be hosted in various
VCMs.

1. From System Configuration, select Drivers & Extensions > VCM Configuration.

The default configuration is called VCM Per Driver. This means that each driver
with a Video Control runs in a separate VCM process (if you have 3 video
connectors and your Control Center client is set to use VCM Per Driver
configuration, the Control Center client runs 3 VCM processes, one for each
connector).

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

104

2. Select Add. Create a new VCM configuration

3. Fill in the VCM details:
a. Type a name for the VCM configuration.
b. Select Add Video Control Manager to add a new VCM to configuration.
c. Rename the VCM or leave the default label VCM 1.

d. Assign driver Video Controls to this VCM by clicking , so all the
hosted Video Controls appear on the right-hand side:

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

105

4. Add & and configure more VCMs if needed. You can only save a VCM configuration
once all the Video Controls are assigned. In other words, each Video Control is
hosted on at least one VCM. If you have not assigned a video control to a VCM
configuration, a Not all connector controls have been assigned a Video Control
Manager error message displays when you try to save.

The new VCM Configuration now appears in the list:

5. In System Configuration, double-click the Computers folder.
6. Select a Control Center client instance to configure.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

106

7. From the VCM Configuration drop-down list, select a VCM configuration .

Video Tile Control

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

107

Basic Features of a CCTV Connector
Server-side

• Connection
• Device population (cameras, Inputs and Outputs for DVR driver, Recorders for

VMS driver)
• Select Pre-set
• Alarm handling (Acknowledge, Close and so on.)
• Snapshot
• Switch outputs
• Events: motion detection, online states, alarms

 Client-side

• Live Video
• Playback

o Seek
o Play, Pause
o Playback loop

• Switch camera
• PTZ
• Pre-sets
• Snapshot
• Video Operator Actions

o Digital Zoom
o Focus
o 360 De-warp
o Audio In/Out
o Video resolution selector

• Lifetime Manager

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

108

SDK Session Implementation
• SessionBase - common functionality: connect, disconnect, get devices
• CMSession - derived from SessionBase, implements server-side connector

features
• VCMSession - derived from SessionBase, implements client-side connector

features and a reference counter
• ExportSession - derived from SessionBase, implements video export

Connector Patterns
Over a period of development, Everbridge have created a range of recommended patterns
to use in the development of third-party integrations.

Safe Timer
A Wrapper for the self-restarting timer safe from locking the timer thread when trying to
dispose the timer during a timer tick.

Typical usage is for a storage timer to auto-populate the Playback Time Bar

private SafeTimer _storageTimer;

 ...

 _storageTimer = new SafeTimer(true, PlaybackTimerInterval, "Timebar

Timer");

 ...

 private void StartStorageTimer()

 {

 if (!_storageTimer.Enabled)

 {

 _storageTimer.Elapsed += StorageTimerTick;

 _storageTimer.Enabled = true;

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

109

 }

 }

 private void StopStorageTimer()

 {

 if (_storageTimer != null && _storageTimer.Enabled)

 {

 _storageTimer.Elapsed -= StorageTimerTick;

 _storageTimer.Enabled = false;

 }

 }

 private void DisposeStorageTimer()

 {

 StopStorageTimer();

 Task.Run() =>

 {

 _storageTimer?.Dispose();

 _storageTimer = null;

 }

 private void StorageTimerTick(object sender, EventArgs e)

 {

 //TODO required processing

 }

Assembly Redirection
Dynamically load the 3rd party SDK DLLs in runtime subscribing
to AppDomain.CurrentDomain.AssemblyResolve. This is used in two cases:

• To automatically load the latest version of the SDK to make the driver compatible
with multiple SDK versions and minimize the upgrade effort

• To prevent copying the DLLs locally to the Bin\ folder of the Connection Manager

or VCM

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

110

Used in drivers: March Networks, Genetec, Avigilon

The code using Assembly Redirection must be refactored so that the classes where the
Redirection occurs does not reference any SDK types. These must be offloaded by using
wrapper classes or Interfaces.

If the SDK is C++ based or a .NET wrapper around C++ libraries, the Assembly Redirection
does not work. However, the driver can try to load the SDK Assemblies directly from
the SDK install folder:

Assembly.LoadFrom(@"C:\GEVISOFT\GeViProcAPINET_4_0.dll");

Generic Pool
See drivers: Verint Nextiva, MxPro5

Generic Poller
This is useful in large scale systems where SDK does not provide users with connectivity
monitoring and you want to implement a polling thread. On sites with hundreds of
servers, it is not a good idea to run a thread per server as this leads to overload and thread
starvation. Instead, use the global poller which uses one thread for all the servers/devices.

Usage example:

private void Connect()

 {

 var poller1 = GenericPoller<string>.Instance("Connectivity");

 var poller2 = GenericPoller<int>.Instance("Cameras");

 poller1.PollingInterval = 1000;

 poller2.PollingInterval = 300;

 //Initialize connectivity poller

 poller1.AddItem(new PollItem<string>("1", PollConnectivity,

500));

 poller1.AddItem(new PollItem<string>("2", PollConnectivity,

500));

 //Initialize cameras poller

 poller2.AddItem(new PollItem<int>(1, PollCameras, 500));

 poller2.AddItem(new PollItem<int>(2, PollCameras, 500));

 //stop polling Camera 1

 poller2.RemoveItem(2);

 //stop pollers

 poller2.Dispose();

 poller1.Dispose();

 }

 private void PollConnectivity()

 {

 ...

 }

 private void PollCameras()

 {

 ...

 }

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

111

Playback FSM
Some video playback systems have a complex set of steps to move between video
playback modes based on previous state and potential failure mode. This Finite State
Machine class allows for the definition of these steps and correct step based on previous
known state. Example code is provided in Appendix A

Connection Monitors
Classes providing generic way of monitoring subsystem availability (by Ping, TCP, HTTP
or SDK).

• NetworkMonitor - part of the ISDK, Reference assembly:
CNL.ControlCenter.Driver.Utility.dll

• PingMonitor - part of the ISDK, Reference assembly:
CNL.ControlCenter.Driver.Utility.dll

NOTE: Ping is generally deprecated as a means of connection monitoring as it
exposes an attack surface within the system. If used, it is recommended to have a

property on the server to enable the functionality and to default it to disabled.

• TCP Monitor - Useful class to monitor a standard TCP connection (should be used
if there is no SDK to provide you the connectivity).

• SDK-based Connection Monitor.

Network Socket Wrappers
TcpClientWrapper wraps the standard .NET TcpClient class. It connects and runs

background thread continuously reading from the socket.

You can configure Encoding. Encoding has events Connected, Disconnected,
DataReceived. Data is always received as byte[] and can be sent both as byte[] or string.

Example: Commend driver

Float Comparison
Comparisons of two float numbers can return invalid results, so it's better to compare this
way:

private const float ThresholdMin = 0.00001F;

 public static bool Compare(float firstNumber, float secondNumber)

 {

 return Math.Abs(firstNumber - secondNumber) < ThresholdMin;

 }

 public static bool Compare(float firstNumber, int secondNumber)

 {

 return Math.Abs(firstNumber - secondNumber) < ThresholdMin;

 }

Example: IndigoVision driver, FloatExtensions class

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

112

Split Camel Case
If you need to provide a user-friendly description for an SDK enum type, you can use
Regex to convert the enum:

internal static class GuardallShortenedEventCodes

 {

 internal enum GuardallShortenedEventCode : byte

 {

 Headcount = 20,

 CircuitAutocheckFail = 22,

 DefaultPinsClear = 55,

 ...

 }

 public static string GetTypeString(this GuardallShortenedEventCode

eventCode)

 {

 switch (eventCode)

 {

 case GuardallShortenedEventCode.Headcount:

 return "Number of activations of all circuits programmed

with the head count option while the panel was unset";

 case GuardallShortenedEventCode.DefaultPinsClear:

 return "Default PINs cleared";

 ...

 default:

 return SplitCamelCase(eventCode.ToString());

 }

 }

 public static string SplitCamelCase(string input)

 {

 return Regex.Replace(input, "([A-Z])", " $1",

RegexOptions.Compiled).Trim();

 }

 }

Device Population
When developing a new connector, you must remember that although your development
environment may have only a few devices to work against, your production environment
may have many hundreds of devices/sensors. This can lead to the connect/population of
devices taking many minutes and possibly causing Connection Manager to fail the device.

A suggested solution is to pass the population of devices onto a background task, leave it
to complete and indicate the device as 'online'. This has some implications.

• If no error handling/checking is implemented in the background task, then device
population can fail with no indication of the failure. In other words, not all devices
are created/populated.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

113

• No checking of the status of background task means:

o if the device is taken 'off-line' the background device creation task
continues.

o changing the device state rapidly (such as, pressing F12 multiple times) can
cause multiple background device creation tasks to be active. This can lead
to duplication of devices in the system.

Device Patters Example Code
In the declarations for the device server, add the following:

[NonSerialized]

 private CancellationTokenSource tokenSource;

 [NonSerialized]

 private CancellationToken cancelToken;

[...]

/// <summary>

 /// Connects to the physical device.

 /// </summary>

 [SuppressMessage("Microsoft.Design",

"CA1031:DoNotCatchGeneralExceptionTypes")]

 public override void Connect()

 {

 try

 {

 CheckDisposed();

 var username = DeviceDefaults.DefaultUsername(this);

 var port = DeviceDefaults.DefaultPort(this);

[...]

log.InfoFormat(CultureInfo.CurrentCulture, ErrorMessages.ConnectingText,

username, IP, port);

 lock (lockInstance)

 {

 Disconnect();

 //

 // Should never get to this state

 // but just in case

 //

 if (tokenSource != null)

 {

 tokenSource.Cancel();

 tokenSource.Dispose();

 }

 tokenSource = new CancellationTokenSource();

 cancelToken = tokenSource.Token;

 if (string.IsNullOrEmpty(IP))

 {

 throw new

ArgumentException(ErrorMessages.IPAddressNotSpecified);

 }

[...]

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

114

log.DebugFormat(CultureInfo.InvariantCulture, "Last Event Received: {0}",

LastEventReceived);

 if (RetrieveOfflineEvents &&

(!string.IsNullOrEmpty(LastEventReceived)))

 {

 Task.Run(() => GetOfflineEvents(cancelToken), cancelToken);

 }

 Task.Run(() => PopulateDevices(cancelToken), cancelToken);

[...]

}

 }

 catch (DeviceException ex)

 {

 log.Error(ex.Message, ex);

 OnStateChanged(DeviceState.Failed, ex.FullMessage);

 Disconnect();

 }

 catch (Exception ex)

 {

 log.Error(ErrorMessages.DeviceConnectionFailed, ex);

 OnStateChanged(DeviceState.Failed,

ErrorMessages.DeviceConnectionFailed + Environment.NewLine + ex.Message);

 Disconnect();

 }

 }

 /// <summary>

 /// Disconnects from the physical device.

 /// </summary>

 public override void Disconnect()

 {

 PropertyChanged?.Invoke(this, new

PropertyChangedEventArgs(string.Empty));

 CheckDisposed();

 log.InfoFormat(CultureInfo.CurrentCulture, ErrorMessages.Disconnecting,

DeviceDefaults.DefaultUsername(this), IP, DeviceDefaults.DefaultPort(this));

[...]

lock (lockInstance)

 {

 //

 // Cancel any running background task

 //

 tokenSource?.Cancel();

[...]

}

 //

 // and destroy the token source/token from the system

 //

 tokenSource?.Dispose();

 tokenSource = null;

 log.InfoFormat(CultureInfo.CurrentCulture, ErrorMessages.Disconnected,

DeviceDefaults.DefaultUsername(this), IP, DeviceDefaults.DefaultPort(this));

 }

 /// <summary>

 /// Populates the devices connected to the server.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

115

 /// </summary>

 private void PopulateDevices(CancellationToken token)

 {

 try

 {

 //

 // Was cancellation already requested?

 //

 if (token.IsCancellationRequested)

 {

 log.InfoFormat("Task {0} was cancelled before waiting for

network data.", MethodBase.GetCurrentMethod().Name);

 token.ThrowIfCancellationRequested();

 }

 //

 // if you split the population into additional methods remember to

hand the token through to those and check

 // at each stage for termination so as to terminate the task as

quickly as possible, otherwise

 //

 // Foreach device

 // is cancelation requested?

 // break out the task

 // else

 // add device

[...]

}

 catch(Exception ex)

 {

 //

 // report something here

 //

 [...]

 }

 }

Connector Testing
To test a connector, you must think about testing:

• a connector can be successfully installed and uninstalled.
• a connector can successfully connect to a subsystem.
• all the required connector features.
• all operator actions can be carried out successfully.

Connector Testing Prerequisites
Before beginning your testing, complete the following prerequisites.

1. Install Control Center client and server.
2. Check the requirements for the connector.
3. Check the video subsystem, for example, check hardware manuals.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

116

4. Set up the subsystem to test all the required features.
o The subsystem is configured to raise all the events supported in the

connectors.
o For video connectors:

▪ it has at least one PTZ camera with pre-configured presets.
▪ it has at least 3 cameras configured:

▪ one camera recording continuously.
▪ one camera recording on motion or another event.
▪ one camera that does not have any recordings.

5. Study the RDIN. Check the following sections: Installation, and Known Issues &
Limitations.

6. Install all the connector prerequisites as described in the RDIN.
7. Install the SDK on relevant machines as described in the RDIN.
8. Install the connector in Control Center.

Connections and Online States
To make a connector connect to a subsystem:

1. Add a server device representing a subsystem server/service/panel.
2. Set the connection properties.
3. Enable the device.

If the connection is successful, the device goes to a Connecting state, and then to an
Online state.

if the connector cannot connect, the device goes to a Failed state and the State
Description explains the reason for the failure.

Connection properties may be slightly different from connector to connector, but a
typical set of properties include:

• IP - IP address or host name of the subsystem.
• Port - (for TCP-based protocol/SDK). This can be set to a valid TCP port. It can also

be set to 0. In this case, the connector should automatically use a default value
(such as 80 or 443 or some system-specific port).

• Username
• Password
• Timeout - (1 minute by default): This is the period of time the Connection Manager

is waiting for a device to go to an Online state after it's Enabled. If the device does
not go Online in time, Connection Manager sets the device to a Failed state.

• Retry Interval - (1 minute by default): after the device is in Failed state, Connection
Manager schedules automatic re-connection after the amount of time set in Retry
Interval.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

117

Windows Credentials/Single Sign On

Some subsystems have an option to use Windows credentials to connect. If several
connection options are available, the driver should have a property called Authentication
Mode (or similar) so a user can select an authentication type from the list.

 If Windows credentials are used, the Username property is typically in the
format Domain/ user or user@domain.

Lifetime Manager

The Lifetime Manager is used in some CCTV drivers to allow faster camera display.
It should only affect the first camera displayed after the Control Center client starts up.

To make the feature work, the main server device has a property, typically, a boolean
property called Auto Connect, controlling whether the Control Center clienttries to
connect to this server on start up.

Test Scenario Expected Behaviour Comments

• Control Center client
starts up.

• Subsystem server is
available.

• Auto Connect property
is set to True on the
server device.

The VCM automatically
connects to the subsystem
server.

This can be confirmed
from VCM logs.

• Continued: drag a
camera device to
Display Area.

The camera is displayed
within 1-2 seconds.

• Control Center client
starts up.

• Auto Connect property
is set to False on the
server device.

The VCM does not
connect to the subsystem
server on start up.

This can be confirmed
from VCM logs.

• Continued: drag a
camera device to
Display Area.

The camera is displayed
within 10-20 seconds
(depends on the
subsystem and the
network speed).

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

118

• Control Center client
starts up

• The server device is
Disabled in Control
Center.

The VCM does not
connect to the subsystem
server on start up.

This can be confirmed
from VCM logs.

• Continued: drag a
camera device to
Display Area.

The camera is displayed
within 10-20 seconds
(depends on the
subsystem and the
network speed).

• Control Center client
starts up.

• Server device is
Disabled in Control
Center.

• Enable the server
device.

The VCM does not
connect to the subsystem
server on start up. It also
does not try to connect
when the server device is
Enabled.

This can be confirmed
from VCM logs.

• Control Center Client
starts up.

• Subsystem server is
unavailable or
connection details are
invalid in the server
device.

• Auto Connect property
is set to True on the
server device.

The VCM automatically
attempts to connect to the
subsystem server. An
option is to allow Lifetime
Manager to implement a
retry mechanism, similar
to Connection Manager
re-try mechanism.

There should be a limited
number of re-connect
attempts controlled by a
server device property
Maximum Reconnects.

• Control Center client
starts up, subsystem
server is available.

• Auto Connect property
is set to True on the
server device.

• Wait until the VCM has
connected to the
subsystem.

• Disconnect the
subsystem from
network, then re-
connect the network.

• Wait until the server

The VCM should
automatically re-connect
to the subsystem when it
becomes available. When
the subsystem is back
online, the camera camera
should be displayed within
1-2 seconds.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

119

device returns to
Online state.

• Drag a camera device to
Display Area.

Start or re-start Control
Center client,

Auto Connect property is
set to True on the server
device,

Display the camera device
after the client has started
up as soon as possible

(simulate the situation
where Lifetime Manager is
still connecting to the
subsystem, where the
camera is being displayed).

The video tile will stay in
Connecting state until
VCM has finished logging
in to the subsystem and
the video is displayed
successfully.

This scenario occurred in
CBK with DvTel Latitude
driver.

All of the above behavior
should be tested with
multiple VCMs configured.

Device Population
For most connectors which support child devices, a server device is added manually. Once
the device is Enabled, it connects to a subsystem and goes to Online state.

There are two basic options:

1. A connector queries the subsystem for available devices, then the child devices are
populated automatically in Control Center.

2. If there is no way to query the subsystem, the device configuration is supplied
manually by setting a server device property as a path to a configuration CSV file or
a custom window, where configuration can be set up manually.

 Typical Scenarios for Device Population

Test Scenario Expected Behavior Comments

First-time
connection, create a
new connectable
parent (server) device
and Enable it.

After connecting to the subsystem, the devices goes to
Online state. The device then then goes to Populating
Devices custom state, while populating the child devices.
Finally, the device goes to the Online state, once all the
child devices are populated.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

120

After its child devices
are already populated
and in Disabled state,
enable parent (server)
device.

Same as above.

Enable parent (server)
device after its child
devices are already
populated and are
Enabled in Control
Center.

Same as above. If some of the child devices can populate
devices as well

(for example Panels which in turn can populate I/Os and
readers) these will be also populated if can successfully
get a list of devices - the new devices

After connected to the
subsystem, delete a
child device in Control
Center, then re-enable
the parent device.

The deleted child device should be re-populated in
Disabled state.

Run the Sync Devices
(in other words,
Update Devices)
parent device method
after
successfully connected
to the server.

The connector should query the subsystem and re-sync.

The child devices should:

• Populate any missing Control Center devices in
Disabled state,

• set any devices that were deleted in the
subsystem to Failed state with description similar
to Device not found.

If currently not connected
to the server, the method
must log an error and
return False.

Run the Sync Devices
(in other words,
Update Devices)
parent device method
multiple times, quickly.

The connector must not allow more than one device
population at a time. If the connector is already
populating devices the repeated method call should
result in a warning log message and return False. The
original device population must complete uninterrupted.

Quickly, disable and
enable parent device
multiple times.

As above but allow only one device population at a time.

Test cancelling device
population
by enabling a parent
device, waiting for the
connector to start
device population, and
then disable the device

Device population must stop almost immediately and the
parent server device goes to Disabled state.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

121

while still populating
the devices.

 Notes:

• All new devices are populated in Disabled state.
• For all video camera devices, the connector should automatically detect whether a

camera supports PTZ and set PTZ Supported and Presets Supported properties to
the correct value.

Re-adding Child Devices Manually After Deletion

You should test manually reading child devices after deletion from a parent device.

1. Right-click server device and select Manage Interfaces to start Device
Connections wizard.

2. Select the parent device, and select the interface of the previously deleted camera.
3. Select Add to connect the server device to the new camera device by linking the

two selected interfaces.
4. Select Finish to close the wizard.

Device Properties
To view the properties of a connector, in System Configuration, select a device. The
Driver Properties pane displays. Properties control the behavior of a device. Properties
on a server device can affect the behavior of the whole driver.

Device Methods
Methods are commands/actions available for a device. Device methods have to be
asynchronous. Any returned data has to be raised in a separate event. Device methods
return a unique ID. This is included in any event raised as a result of the method being
invoked.

Methods can have parameters of various types and return a value which is typically a
boolean variable. In other words, True if the command was successful, False otherwise.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

122

If a command such as Open Door returns True it means the command was successfully
sent to the subsystem. It does not mean the command was executed, in other words, the
door is open. If the method returns False, it means the command could not be sent to the
subsystem.

Invoke Device Methods

1. In the Properties pane in the Actions category, select the method. If the method
has more than one parameters, a dialog displays and you must supply the
parameter values.

2. Run a Response Plan with a Script shape. To check the return value, create a
variable in a visual response plan (VRP) that represents the value, and assign the
method result to the variable. For example, call Select Preset method on a camera
device passing in the Preset Number. For this VRP, you need to create the variables
camera and PresetNumber.

In this example, call Open Digital Output method on an output device and print the
return value.

Device Events
Every device can raise events. Events are first reported by the Connection Manager
service and then sent to the Rules Engine service to trigger response plans, if required.

Every device has one standard event, Device State Changed.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

123

To see the available device events, select a device in System Configuration, and expand
the Events.

Creating a VRP Triggered on Device Event

To test a device event you can create a VRP that is triggered when an event is raised.

1. Right-click on event and select React to Event > Run response plan > Create New
response plan.

2. Navigate to Services and drag the Connection Manager service while testing the
events and the response plan.

3. Verify the events are raised by the driver by going to System Configuration >
Services folder. Double-click Connection Manager service to open the Event
Viewer.

4. Make sure the VRP created for the event is triggered.
5. (Optional) Go to System Configuration > Computers folder. Double-click Rules

Engine Server to open the Event Viewer.

Event Properties

Event properties support basic types; DateTime, Integer, Double, String, custom Enum,
Boolean.

Simulating Events

Control Center allows you to simulate connector events raised without any subsystem
activity.

1. Go to System Configuration.
2. Right-click on an event and select Simulate Event.
3. If the event has custom properties, fill in the property values and select OK.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

124

Device Custom States
In addition to standard online states (Online, Disabled, Offline, Failed, Warning), a device
can implement one or more additional states called custom states . Typically, a custom
state displays a description in addition to the icon.

More examples:

• Omitted state

• Abnormal state

• Unset state

Typical Usage of Custom States

You can represent a current state of a relay output or a logical output device. Typically,
the available states are On and Off. Where the current state cannot be polled by a
connector, the device stays in an Unknown custom state until the first state update from
the subsystem.

There are some states that it might be important for a customer to see, track and control.
These are frequently implemented as custom states.

• Show current device faults. If there are multiple faults, the state description lists
them all, for example, Door fault, Battery low and so on. If this is a compound
device, for example, an ACS logical door which can have multiple readers, inputs
and a door lock, the state description lists this. For example, Reader IN: disabled,
Lock fault.

• Populating custom state can be used to show a user that the connector is busy
populating child devices. This is applicable for connectors with child devices
released for large scale projects where device population can take significant time.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

125

• States of devices representing logical subsystem entities like Zones, Areas or
Groups that can be locked, unlocked, set/armed, unset/disarmed,
disabled/omitted/inhibited.

Live Video
When you select a video, the video should be displayed, in a tile layout, for example, single
tile, multiple tile, full screen or minimized, or in a sequence, using a short cut, or optical
zoom and digital zoom. You also need to check that when you unplug the device, if it goes
to offline state and if the video still plays. Finally, if you are able to play the video using
a VRP.

Presets

The Preset Selector menu is available from the Tile menu.

The same menu is available from System Configuration and selecting a camera device.
You can use the Select Preset method from the Properties pane.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

126

Note: Control Center ISDK and VCM have the following known limitations:

• It only allows to set Presets supported = True or False. In other words, if Presets
are supported, Control Center assumes that presets can be Set (created/saved),
Renamed, and Deleted. If the actual subsystem does not support it, the Delete
Preset dialog still appears, but when you select OK to delete, nothing happens.
Although, the driver might emulate the preset deletion overriding the SDK
behavior.

• Even though the ISDK provides 2 independent boolean properties, Preset
Supported and PTZ Supported, Preset controls only appear on a video tile if both
properties are set to True. This makes the Preset Supported property obsolete.

• The Preset GUI is inconsistent. The Preset Delete dialog shows only Preset
Number, whereas the drop-down menu shows only Preset Labels. Set Preset
dialog shows both Preset Number and Preset Label.

Playback

You can playback the video from a camera in Control Center. Drag a camera device into a
Display Area. A Tile Layout is automatically generated to host the video. The camera is
displayed in Live Video mode.

Select Playback on the tile menu to switch to Playback mode.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

127

The tile menu has the following controls.

You can use the calendar control to seek playback for a particular date and time. Select a
date and time and select Go.

Playback Loop

Everbridge recommends that you validate playback loops in time zones other than UTC+-
0. Times shall always be described in UTC in response plans and always in LocalTime in the
UI.

• Start playback Loop Using the mouse, mark a region on the timebar where you
want to define a loop. When you release the mouse button, a context menu
displays. Select Start Video Loop. The loop is marked in the timebar.

• Stop playback Loop Right-click the Loop marker in the timebar. In the context

menu, select Stop Video Loop.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

128

• Display a camera in Playback mode from a VRP Create or import a VRP that
displays a camera in Playback mode.

You can modify a VRP to enable you to test playback loops. Double-click a VRP to
edit it in the VRP Editor.

o To display the camera in Playing mode, select Set Tile Contents shape and
set the Paused property to False.

o To display the camera in Paused mode, select Set Tile Contents shape and
set the Paused property to True.

Timebar Events

 Video connectors can optionally make camera device events to appear on a timebar.

The timebar events can be configured to:

• be logged to timebar.
• provide a user with an option to select or deselect an event type to appear on a

timebar.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

129

If an events appearance on a timebar is optional, these events can be configured by
clicking the Timebar Events property on a camera device in the Properties pane in
System Configuration.

Summary of VRPs for Testing Playback

Test VRP Name Details

Show camera in Playback
mode (playing).

Display Camera Feed
Playback.xml

Show camera in Playback
mode (paused).

Display Camera Feed
Playback Paused.xml

Show camera in Playback
Loop mode.

Display Camera Feed
Playback Loop.xml

Show multiple cameras in
Playback.

Display Multiple Cameras in
Playback Mode.xml

Create a folder in Control Center and
copy camera devices to the folder. The
Folder is set via the
DeviceFolder variable.

All the cameras will try to play from the
same time, set by StartDate Variable.

Check memory leaks
while re-displaying Tile
Layout.

TileLayoutReload3.xml
You need to find or create a Tile
Layout (2x2 or bigger) to be assigned
to tilelay VRP variable.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

130

Video Operator Actions

You can test the operator actions that can be performed on video. Optional video features
are available as additional controls on the video tile menu.

Digital Zoom

To test digital zoom:

• Digital Zoom button must appear in the video tile
• To switch Digital Zoom on, press the Digital Zoom button. A Digital Zoom icon

appears in the lower left corner of the tile and the mouse cursor changes to a cross
(+).

• To switch Digital Zoom off, press the Digital Zoom button. The Digital Zoom icon
disappears and the mouse cursor changes back to a default cursor.

• Digital Zoom can be supported for both Live and Playback modes:

o When Digital Zoom is on in Live mode and a user switches the tile to
Playback, the Digital Zoom is automatically disabled.

o When Digital Zoom is on in Playback mode and a user switches the tile to
Playback, the Digital Zoom is automatically disabled.

Video Export

To schedule a new video export Job:

1. Start Video Export Wizard.
2. In Control Center client, go to System > Video Export Scheduler
3. Select New > Next and assign a name for your video export job.
4. Select Next > Next and choose a camera device to export from.
5. Select > to move the selected camera to the right pane.
6. Select Next.

7. Select a start time and end time in local time (not in UTC).
8. Select Path to pick the folder to save the exported files to. The folder on Video

Export Service machine is used/created.
9. Select Next in Summary page.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

131

10. Select Submit to close the Wizard. A new Job appears in the Export Manager.

11. Double-click on the task to show the export task progress and information.
12. If an export task fails, an error message appears in the Message column.

13. After an export task fails after 3 retries, the parent export job fails as well. You can
r etry or cancel export tasks.

There are some known issues with video exports.

• Progress of export task is not shown when connectors report it (raising
OnProgress() event).

• When a task is cancelled, <NULL> is displayed in the Wizard.
• The export file path is created on the Control Center client machine instead of the

Video Export Service machine.

You can configure a Video Export Service to run on a separate Machine, rather than on a
Control Center server machine.

 For this test you need 3 separate machines:

• Control Center client
• Control Center server
• Control Center VES

Do the following:

1. Run Control Center server installer.
2. Select Custom installation
3. Select only Video Export service to install:

o enter the same service credentials used for other services on Control
Center server machine.

o enter the same SQL Database Instance as the other services on Control
Center server machine.

4. On the VES machine, stop the VES if running.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

132

5. Add the following: <add key="CoreServerHostname" value="Control

Center server machine host name"/> to the C:\Program Files
(x86)\Everbridge\IPSecurityCenter\IPSecurityCenter Video

Export

Service\CNL.IPSecurityCenter.VideoExport.WindowsService.exe

.config.

6. In Control Center client, navigate to System Configuration > Global Settings >
Video Export.

7. Add a connection to the new VES, providing a web service URL: net.tcp:// VES
machine host name:7333/VideoExportService

8. Follow the driver RDIN Installation section to install the subsystem SDK on the
VES machine, if needed.

9. Copy \\ Control Center Server

hostname\c$\ProgramData\Everbridge\ControlCenter\Packages to

C:\ProgramData\Everbridge\ControlCenter. This is so the driver can

load on the VES machine.
10. Start the Video Export service on VES machine.

Test SDK Sessions/Connections Release
On the server side, when Connection Manager is stopped and/or server device is
Disabled, the connector is expected to:

• close all TCP connections
• close any SDK connections
• successfully log out from the subsystem releasing any 3rd party licenses if used.

On client side (video drivers), when all the video feeds are closed in Control Center client,
the connector is expected to

• close all TCP connections
• close any SDK connections
• successfully log out from the subsystem releasing any 3rd party licenses if used.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

133

This can be tested in 2 ways:

1. Run netstat -a -b command on native server Command Prompt to show all TCP
connections.

2. Check there are no established TCP/UDP connections with Connection Manager
machine. Tip: if there are too many connections, you can use filtering: netstat -a -b |
findstr "10.*"

3. Use native software to show existing or recent SDK sessions, license counter or
logs showing Control Center logging in/out.

Memory Leaks Detection
You can use the following software tools for memory tracking.

• PerfMon Windows tool. Set Process > Private Bytes counter for the tracked
process.

• ANTS Memory Profiler Attach to the requested process. Take one Snapshot and
then take several more snapshots during the test. Compare the memory
consumption, available here: \\fileserver\software-library\Internal
Software\RedGate\DotNetDeveloperBundle

• Loupe Desktop After the tested period, crash/stop the process. In Loupe, go to
Local Sessions > Control Center, and double-click the recently finished session.
Check the memory graph.

• Process Explorer
• Task Manager Visually check the RAM level (Memory (private working set)

column). This is the least preferred tool as there is no way to record or display the
memory consumption during the time period. You should only use this for short
running tests.

Uninstall Connectors
For some test scenarios, such as connector version upgrade, it may be necessary to
remove the current version of the connector from Control Center.

1. In System Configuration, delete all devices of the connector. If there are any
dependencies preventing the devices being deleted (such as VRPs, Tile Layouts,
Sequences using the devices), remove the dependencies and try deleting the
devices again.

2. Close all instances of Control Center client.
3. On every machine that has Control Center client installed, delete the connector

from the following folders:
o C:\ProgramData\Everbridge\IPSecurityCenter\Packages
o C:\ProgramData\Everbridge\IPSecurityCenter\Extracted

Packages
o C:\ProgramData\Everbridge\IPSecurityCenter\Windows

Client\Packages
o C:\ProgramData\Everbridge\IPSecurityCenter\Windows

Client\Extracted Package

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

134

4. On Control Center server, stop the following services:
o Control Center Connection Manager Service hosting the driver devices
o Control Center Server

5. On Control Center server machine, delete the connector from folders:
o C:\ProgramData\Everbridge\IPSecurityCenter\Packages
o C:\ProgramData\Everbridge\IPSecurityCenter\Extracted

Packages
o C:\ProgramData\Everbridge\IPSecurityCenter\Connection

Manager\ CM name\Packages
o C:\ProgramData\Everbridge\IPSecurityCenter\Connection

Manager\ CM name\Extracted

6. On Control Center server machine, re-start the following services:
o Control Center Connection Manager Service hosting the driver devices
o Control Center Server

7. Restart the Control Center client. The connector package should not appear in
System Configuration > Drivers & Extensions.

All Connectors - Expected Functionality
The expected functionality of drivers may depend on the particular subsystem. The
following table describes some standard test scenarios.

Test Scenario Comment Behavior 1 Behavior 2 Behavior 3

Disconnection
while the
connector is
populating child
devices

(only relevant
for connectors
with child
devices)

If the connector
populates device
synchronously (as
implemented in most
connectors), the
connection may time
out.

If the device
population is
asynchronous, there
may be
synchronization
problems, if user
decides to re-enable
server device or
connection is broken
while devices are
being populated.

(March Network Command
driver): after logging in to
subsystem the connector
goes Online briefly to stop
CM timer and prevent
connection timeout, then
goes to Populating Devices
Custom state to show the
user the driver has not
finished initializing.

Most connectors:
device populates
all devices and only
then does the
server device go to
an Online state.

This can result in
Timeout. Re-
connect attempts
will end up with
dead locking CM.

Some
connectors:
server device
goes Online
immediately
after logging in to
subsystem and
then
populates device
s in the
background.

No timeouts in
this case, but the
connector must
be able to stop
populating
devices and
continue the next
connection
attempt.

Note: Best

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

135

practice is to
populate devices
in one call which
is then queued in
CM. You must
make sure this
application is
atomic.

Offset is not
displayed on
specific events

If the connector has
the option to give an
offset to the server,
it will not be
displayed in all of the
events.

(EAL driver) When
Unlocked/Locked event in
Rules Engine there are
three visible events

• DoorLockedEvent,
• CustomChangedEvent,
• DeviceStateChanged.

The DoorLockedEvent and
the CustomChangedEvent
would show the set offset.

DeviceStateChanged
would show the local time.

This behavior is to
be expected from
all connectors.

Video Connectors - Expected Functionality
The expected functionality of video connectors may vary slightly depending on the
particular subsystem. The following table describes test scenarios to test behavior
that may be different from standard.

Test Scenario Comment Behavior 1 Behavior 2 Behavior 3

Disconnect a
camera from
the network
(or, for
analogue
cameras
disconnect it
directly from
the server
hardware)

Some subsystems
display a 'no
video' icon on
their video
controls, some
show a black
screen, some
cause a video
freeze.

As we want a
standard

Display a standard
"Video signal lost"
error message on
the video tile.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

136

behavior across
connectors and a
clear indication a
signal was lost,
preferable
method is
displaying a
standard error
message on the
tile.

Display a
camera while
parent video
server is
disconnected

(the server
device is in
Failed state)

In some
subsystems, it is
still possible to
display cameras
despite the server
(typically a VMS)
being offline. The
convention is, a
driver must
display a video if
it can.

(Typical for DVRs
with cameras
physically
connected to it)

Display an error
message in the tile
saying "The video
server is not
connected"

(Typical for web
service
connection-less
APIs)

Display a camera
regardless of
parent server
state.

Restore
connection
to server
while
displaying a
camera

If displaying a
camera is
dependent on the
server
connection, the
connector has to
manage a re-
connection loop,
and only try to
restore the feeds
once re-
connected.

Re-connection
implemented in the
connector
(example: Bosch
BVMS, March
Networks): The
connector (in VCM)
will eventually re-
connect to the
subsystem server
and re-display the
camera without
user intervention.

Re-connection is
not implemented
in the connector
(example: Verint
Nextiva
connector).

The tile will
remain displaying
an error message
until the camera
is manually re-
displayed (or
with a VRP).

(Typical for
web service
connection-
less APIs)

Connector
implements
re-connection
per camera.

The camera
keeps
displaying
video even
with the
server offline.

Display a
non-video
device in Tile
Layout

Control Center
allows non-video
devices to be
dropped on video
tiles, and the
connector must

Display an error
message: "This
device does not
support video"

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

137

cope with this.

Native server
configuration
changes

Subsystems
rarely provide API
to inform about
configuration
changes. A user
may need to
either re-enable a
server device or
run a Refresh
Devices server
method to force
downloading a
new
configuration.

SDK does not
provide a way to
detect
configuration
changes.

A user has to re-
enable a server
device to get a new
configuration.

SDK does not
provide a way to
detect
configuration
changes and the
client wants to
keep the driver
connected.

A server device
implements Refre
sh Devices server
method which
forces the driver
to re-connect
and/or download
the updated
configuration.

SDK can
detect config
uration
changes (exa
mple: Bosch
BVMS).

The
configuration
changes are
detected
automatically
and no need
for
RefreshXXX
methods on
server device.

Re-adding a
camera to
subsystem

In some
subsystems, a re-
added camera has
a new SDK ID
which makes the
connector treat it
as a new camera.
A new camera
device is
populated and the
device that
represented the
camera earlier
becomes
unusable.

Subsystem
assigned a new
unique ID to a re-
added/enabled
camera.

A new Control
Center camera
device is created
for the re-added
camera.

Subsystem
assigned the
same ID to a re-
added/enabled
camera.

The same
Control Center
camera device is
maintained for
the re-added
camera.

Previous
Frame and
Next Frame
Video
Operator
Actions

These two
buttons are
typically
implemented for
the SDKs which
do not support
slow motion
(speeds 0.5, 0.2

Subsystem SDK
supports slow
motion:

Slow motion is
implemented. Whe
n playback is
paused, it is
possible to use the

Subsystem SDK
doesn't support
slow motion:

Slow motion is
not implemented.
When playback is
paused the speed
slider has no

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

138

and so on), but
support playback
of a next/previous
frame.

speed slider control
to change speeds <
1

effect. 2 buttons
"Previous Frame"
and "Next
Frame" appear in
the video tile
menu.

Video
Operator
Actions
availability

The custom Video
Operator Actions
appear in every
connector mode
(Live, Playback,
Paused) even
though most of
them only work in
one mode. For
example, Next
Frame will only
work in Paused
mode.

Audio
Support

There is no
standard
implementation
of Audio.
However, usually
there are
two buttons:
Audio Mute -
toggles the
camera
microphone
on/off (in other
words, 'Audio In'
feature), Toggle
Audio Out -
enable/disable
streaming audio
from Control
Center client
microphone to
camera speaker.

March Networks
implementation
example:

Audio Mute: When
a camera with
audio capability is
displayed, the
audio is
automatically
muted by default.

Playback It is not practical Once switched to

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

139

time when
switching to
Playback
mode

to try rewinding
video to present
time as it takes
time to record
and buffer video.
The exact timing
is unpredictable
as it's heavily
dependent on a
recorder model
and the network
speed. This
means rewinding
to present time
would usually fail.

Rewinding to a
very recent time
(few seconds
back) may
succeed,
but causes the
driver to stumble,
as the video
immediately plays
to the end, then
tries to seek for
more video, load
only few seconds,
then seek again
and so on.

To prevent this,
most drivers try
to rewind to the
last 15-30
seconds instead.

playback mode the
camera plays from
(Now - 15 seconds)

Seek
(rewind)
when a
recording is
not found

Time taken to
rewind a video is
very dependent
on SDK,
hardware, and
network so it can
be unpredictable.

Connectors with
Seek Timeout
property, if
recording is not
found within a
given time, an error
message "Footage
not found" is

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

140

To prevent a
video tile seeking
endlessly, many
connectors
introduce a Seek
Timeout property
on a server
device.

displayed on the
tile and the user
can hide the error
message and try
seek again.

Recorded
video Seek
(rewind)

Native video
control may
behave
differently during
rewind process.

Some connectors
show the rewind
process on the
video control.

Some connectors
do the search in
the background
and then the
results are loaded
into the video
control.

It is preferable to
show progress in
the video tile
during a long seek
operation.

Connector
implements an
overlay showing
'Seeking' message
in the video tile.
This is to hide any
irrelevant video
shown during the
seek operation,
especially for
subsystems where
seek may rewind to
a wrong
unpredictable time.

Native control
shows the
current progress
during
seek/rewind
operation.

Playing back
video

1. The time in
the bottom
left corner
shows the
current
playback time
and gets
updated every
second (for
the standard
x1 speed).

2. The Teardrop
is moving

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

141

along the time
bar. It should
always stay
within a
timebar
chunk, never
between
chunks).

3. The state
shown is
Playing.

Paused video

1. The time in
the bottom
left corner
shows the
current
playback
time. It
doesn't get
updated.

2. The
Teardrop
is not
moving
along the
timebar.

3. The state
shown is
Paused.

Seek
algorithm -
seek time is
earlier than
the first
recording
time
available

The
implementation
depends on the
SDK.

Connector can
fetch the first
recording available:

The camera
playback rewinds
to the first
available recording.

Connector
cannot fetch the
first recording
available:

The video tile
displays error
message saying,
"Footage is not
available" or
"Recorded video
not found"

Seek Ideally the If the SDK supports If the Seek

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

142

algorithm -
seeking for a
time
between two
recording
chunks

connector should
try to play back
the closest
available time to
the requested
seek time.

the smart seek, in
other words, finds
the closest
available time
itself, the outcome
totally depends on
the SDK.

algorithm is
implemented
manually in the
connector:

1. If the closest
available time
is a beginning
of a chunk -
play this
chunk from
the beginning

2. If the closest
available time
is an end
time of a
chunk - play
the last 5-10
seconds of
this chunk

3. A reasonable
criterion for
available video
can be
implemented, for
example, play a
video which is no
more than 1 hour
away from
the desired seek
time. If no
recordings match
the criterion,
display an error
message:
"Footage not
found" or similar.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

143

Playback
seek error
message

Error message
should be
displayed in the
video tile if a user
tries to rewind
video to a time
where there are
no recordings
(and no other
recordings close
enough to the
seek time).

• Display the
error message
as an
Information
message so it
can be hidden
and a new seek
operation can
be done without
closing the tile

• if the native
video control
does not
provide its own
error GUI, it is
better to show
an overlay
displaying the
same error
message. Do
not show
irrelevant
footage as this
may be
confusing.

Below is an
example of an error
message to avoid.
For example, it
covers the whole
tile, so a user
cannot access the
calendar control or
timebar to seek
again. The user
has to close the tile.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

144

'Seeking' Tile
state

As seek or rewind
video can take a
long time, the tile
should display a
'Seeking' state
until the video is
found and ready
to play.

The player state
should say:
"Seeking"

The tile itself may
display an overlay
with "Seeking..."
message

This is better than
displaying a black
screen or an
irrelevant footage.

Seek
Timeout

Many connectors
define a maximum
time allowed to
seek preventing
the Tile to hang
(this is needed for
SDKs which don't
implement this
internally), this is
set in Seek
Timeout property
on the parent
server device

When seek starts
the connector
waits for seek
results displaying
'Seeking' status in
the Tile. If the SDK
returns no results
(or fails to rewind)
for Seek
Timeout, the "No
footage found"
error message is
displayed.

Scroll
Teardrop on
Time bar

In some
connectors, the
SDK does not
allow you to
cache seek results
(or query the
actual chunks
available), so each
rewind may take
time.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

145

Video Export
Task fails

Video Export Job
or Task is
scheduled and
then failed.

Correct error
message is
displayed in
Message column.

The folder in the
path picked in the
export wizard is
not created.

Video Export
Task is
cancelled by
user

Video Export Job
or Task is
scheduled and
then cancelled by
a user.

No error messages
are displayed (or it
can display a status
message:
"Cancelled by
user").

The folder in the
path picked in the
export wizard is
not created.

Video export
when IPSC
Client and
subsystem
are in one
Timezone,
and IPSC
Server is in
another
timezone

Video exported
according to the
local time set in
the Export
Wizard.

The file title
includes timestamp
in UTC.

If a timestamp is
displayed in the
actual video file it
should be in UTC.

Example: OnSSI
Ocularis

Example FSM Implementation
using System;

 using System.Collections.Generic;

 using System.Globalization;

 using System.Threading.Tasks;

 using CNL.IPSecurityCenter.Driver.Utility.Threading;using log4net;

 namespace CNL.IPSecurityCenter.Driver.Verint.Nextiva.Ipsc.PlaybackFsm

 {

 internal class PlaybackFsm : IDisposable

 {

 private struct StateTransition

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

146

 {

 private readonly EPlaybackStates _currentState;

 private readonly EPlaybackFsmCommand _command;

 public StateTransition(EPlaybackStates state, EPlaybackFsmCommand

command)

 {

 _currentState = state;

 _command = command;

 }

 //need this because this object is used as a dictionary key public

override int GetHashCode()

 {

 return 17 + 31 * _currentState.GetHashCode() + 31 *

_command.GetHashCode();

 }

 //need this because this object is used as a dictionary key public

override bool Equals(object obj)

 {

 var other = (StateTransition)obj;

 return this._currentState == other._currentState && this._command ==

other._command;

 }

 }

 protected ILog _log;

 private string _deviceLabel;

 /// <summary>

 /// Seek Time passed by command, saved in this temporary variable

because the seek command might be rejected

 /// </summary>

 private DateTime _seekTimePending;

 /// <summary>

 /// Time to play from in the end of successful Seek query

 /// </summary>

 private DateTime _startPlaybackTime;

 private SafeTimer _seekTimer;

 private float _speed;

 //the stata machine truth table to easily locate valid state

transitions

 private Dictionary<StateTransition, Action> _truthTable;

 private event EventHandler<FsmSeekEventArgs> CmdRequest;

 /// <summary>

 /// Fired when seek operation is failed (due to SDK reply or time

out).

 /// </summary>

 public event EventHandler SeekFailed;

 public EPlaybackStates CurrentState { get; private set; }

 /// <summary>

 /// Gets or sets the last user play/pause command.

 /// </summary>

 public bool IsPaused { get; set; }

 /// <summary>

 /// Gets seek time of the current/last seek operation

 /// </summary>

 public DateTime SeekTime { get; private set; }

 /// <summary>

 /// Amount of video in mimutes loaded per query each way - for a

given SeekTime, FSM will seek for media from -

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

147

 LoadMediaRangeMinutes to LoadMediaRangeMinutes

 /// </summary>

 public int LoadMediaRangeMinutes { get; private set; }

 public DateTime ActualStartTime { get; private set; }

 public DateTime ActualEndTime { get; private set; }

 /// <summary>

 /// Gets or sets the timeout for Seek operation

 /// </summary>

 public int SeekTimeoutMsec

 {

 get { return _seekTimer.IntervalMilliseconds; }

 set { _seekTimer.IntervalMilliseconds = value; }

 }

 public PlaybackFsm(bool isPaused, string deviceLabel)

 {

 _deviceLabel = deviceLabel;

 _seekTimer = new SafeTimer(false, 10000, "Seek Timer");

 _seekTimer.Elapsed += OnSeekTimeout;

 const int throttleDelayMs = 130;

 CmdRequest += CreateThrottledEventHandler(ThrottleInvoker,

TimeSpan.FromMilliseconds(throttleDelayMs));

 Reset(isPaused);

 _truthTable = new Dictionary<StateTransition, Action>

 {

 { new StateTransition(EPlaybackStates.SeekFailed,

EPlaybackFsmCommand.Seek), SeekInit }, //initialize

 new seek operation

 { new StateTransition(EPlaybackStates.SeekInit,

EPlaybackFsmCommand.LoadMedia), LoadMedia }, //the media is

 not loaded yet - load it

 { new StateTransition(EPlaybackStates.SeekInit,

EPlaybackFsmCommand.Play), SeekAndStartPlayback }, //the

 media is loaded & validated already - start playback (play

or pause)

 { new StateTransition(EPlaybackStates.MediaLoaded,

EPlaybackFsmCommand.ValidateMedia), ValidateMedia }, //the

 media is loaded, but not validated - validate it

 { new StateTransition(EPlaybackStates.MediaLoaded,

EPlaybackFsmCommand.Seek), SeekOverride }, //start a new

 seek query while another one is already in progress

 { new StateTransition(EPlaybackStates.MediaLoaded,

EPlaybackFsmCommand.ChangeSpeed), SaveSpeed }, //save the

 speed so playback starts at that speed when we start it

 { new StateTransition(EPlaybackStates.MediaValidated,

EPlaybackFsmCommand.Play), StartPlayback }, //the media

 is loaded & validated - start playback (play or pause)

 { new StateTransition(EPlaybackStates.Playback,

EPlaybackFsmCommand.Seek), SeekInit }, //new Seek

request while playing

 { new StateTransition(EPlaybackStates.Playback,

EPlaybackFsmCommand.Pause), Pause }, //pause the playback

 { new StateTransition(EPlaybackStates.Playback,

EPlaybackFsmCommand.ChangeSpeed), ChangeSpeed }, //change

 the playback speed

 { new StateTransition(EPlaybackStates.Pause,

EPlaybackFsmCommand.Seek), SeekInit }, //new Seek request while

 paused

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

148

 { new StateTransition(EPlaybackStates.Pause,

EPlaybackFsmCommand.Play), Resume }, //resume the paused

 playback

 { new StateTransition(EPlaybackStates.Pause,

EPlaybackFsmCommand.ChangeSpeed), ChangeSpeed }, //change the

 playback speed

 { new StateTransition(EPlaybackStates.Playback,

EPlaybackFsmCommand.Play), Resume }, //Enable Pause for Web

 Client

 };

 }

 public EPlaybackStates ProcessCommand(EPlaybackFsmCommand cmd, bool

throttle, DateTime seekTime =

 default(DateTime), float speed = 1.0f)

 {

 var transition = new StateTransition(CurrentState, cmd);

 if (!_truthTable.ContainsKey(transition))

 {

 _log.WarnFormat("{0}: Illegal Command '{1}' for State

{2}", _deviceLabel, cmd, CurrentState);

 return EPlaybackStates.Illegal;

 }

 else

 {

 Action action = _truthTable[transition];

 if (action != null)

 {

 var args = new FsmSeekEventArgs(cmd, seekTime,

speed, action);

 if (throttle)

 {

 if(CmdRequest != null)

 CmdRequest.Invoke(this, args);

 }

 else

 {

 ThrottleInvoker(this, args);

 }

 }

 }

 return CurrentState;

 }

 /// <summary>

 /// Resets the state machine to initial state values

 /// </summary>

 public void Reset(bool isPaused)

 {

 CurrentState = EPlaybackStates.SeekFailed;

 IsPaused = isPaused;

 _speed = 1f;

 _seekTimer.Enabled = false;

 ActualStartTime = DateTime.MinValue;

 ActualEndTime = DateTime.MaxValue;

 _startPlaybackTime = DateTime.MinValue;

 LoadMediaRangeMinutes = 60;

 }

 private void SeekInit()

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

149

 {

 _log.DebugFormat("{0}: SeekInit", _deviceLabel);

 SwitchToState(EPlaybackStates.SeekInit);

 SeekTime = _seekTimePending;

 _startPlaybackTime = SeekTime; //by default will play from the

desired seek time

 if (IsRelevantMediaLoaded())

 {

 _log.DebugFormat("{0}: media is already loaded", _deviceLabel);

 ProcessCommand(EPlaybackFsmCommand.Play, false);

 }

 else

 {

 _seekTimer.Enabled = true;

 LoadMedia();

 }

 }

 private bool IsRelevantMediaLoaded()

 {

 if (ActualStartTime == DateTime.MinValue)

 {

 return false;

 }

 return SeekTime >= ActualStartTime && SeekTime <= ActualEndTime;

 }

 //Fired when media cannot be validated - meaning the media 'loadled'

is invalid and cannot be played back

 private void OnSeekTimeout(object sender, EventArgs args)

 {

 if (CurrentState == EPlaybackStates.SeekInit || CurrentState ==

EPlaybackStates.MediaLoaded

 || CurrentState == EPlaybackStates.MediaValidated)

 {

 _log.DebugFormat("{0}: Seek timed out", _deviceLabel);

 _seekTimer.Enabled = false;

 OnSeekFailed(true);

 }

 else

 {

 _log.WarnFormat("{0}: Seek time out was ignored! FSM State:

{1}", _deviceLabel, CurrentState);

 }

 }

 //called when Seek process fails or timed out

 private void OnSeekFailed(bool fireEvent)

 {

 _log.InfoFormat("{0}: Seek failed - no data available",

_deviceLabel);

 ActualStartTime = DateTime.MinValue;

 ActualEndTime = DateTime.MaxValue;

 //NOTE: the native pause causes exception in SDK 6.4 SP3, but

might be still relevant in 6.4 SP1

 SwitchToState(EPlaybackStates.SeekFailed);

 if (fireEvent && SeekFailed != null)

 {

 SeekFailed.Invoke(this, EventArgs.Empty);

 }

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

150

 }

 //Cancel existing Seek process

 private void SeekAbort()

 {

 _log.DebugFormat("{0}: aborting the current Seek",

_deviceLabel);

 OnSeekFailed(false);

 }

 //Start a new Seek after aborting an Seek in progress

 private void SeekOverride()

 {

 SeekAbort();

 SeekInit();

 }

 private void StartPlayback()

 {

 if (IsPaused)

 {

 Pause();

 }

 else

 {

 Play();

 }

 }

 //called in SeekInit -> Playback transition (media is loaded already)

 //need to update time on video control before playback

 private void SeekAndStartPlayback()

 {

 NativeSeek(_startPlaybackTime);

 StartPlayback();

 }

 private void Play()

 {

 _log.DebugFormat("{0}: Play", _deviceLabel);

 SwitchToState(EPlaybackStates.Playback);

 NativeChangeSpeed(_speed);

 NativeSeek(_startPlaybackTime);

 NativePlay();

 }

 private void ChangeSpeed()

 {

 _log.DebugFormat("{0}: ChangeSpeed", _deviceLabel);

 SwitchToState(EPlaybackStates.Playback);

 NativeChangeSpeed(_speed);

 }

 private void SaveSpeed()

 {

 _log.Debug($"{_deviceLabel}: SaveSpeed ({_speed})");

 }

 private void Pause()

 {

 _log.DebugFormat("{0}: Pause", _deviceLabel);

 SwitchToState(EPlaybackStates.Pause);

 NativePause();

 }

 private void Resume()

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

151

 {

 _log.DebugFormat("{0}: Resume", _deviceLabel);

 SwitchToState(EPlaybackStates.Playback);

 NativeChangeSpeed(_speed);

 NativeResume();

 }

 private void LoadMedia()

 {

 _log.DebugFormat("{0}: LoadMedia", _deviceLabel);

 if (NativeLoadMedia(SeekTime.AddMinutes(-LoadMediaRangeMinutes),

SeekTime.AddMinutes(LoadMediaRangeMinutes)))

 {

 SwitchToState(EPlaybackStates.MediaLoaded);

 ProcessCommand(EPlaybackFsmCommand.ValidateMedia, false);

 }

 else

 {

 _log.ErrorFormat("{0}: Load media at {1} has failed",

_deviceLabel, SeekTime);

 OnSeekFailed(true);

 }

 }

 private void ValidateMedia()

 {

 NativeValidateMedia(SeekTime);

 }

 ////-- Native method stubs

 protected virtual void NativeResume()

 {

 _log.DebugFormat("{0}: NativeResume", _deviceLabel);

 }

 protected virtual void NativePlay()

 {

 _log.DebugFormat("{0}: NativePlay", _deviceLabel);

 }

 protected virtual void NativePause()

 {

 _log.DebugFormat("{0}: NativePause", _deviceLabel);

 }

 /// <summary>

 /// Load recorded media from recorder device

 /// </summary>

 protected virtual bool NativeLoadMedia(DateTime fromTime, DateTime

toTime)

 {

 _log.DebugFormat("{0}: Loading recorded media from: {1} to: {2}",

_deviceLabel, fromTime, toTime);

 return true;

 }

 /// <summary>

 /// Check the loaded media is relevant to the initial user query~

 /// </summary>

 protected virtual void NativeValidateMedia(DateTime seekTime)

 {

 _log.DebugFormat("{0}: NativeValidateMedia", _deviceLabel);

 }

 /// <summary>

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

152

 /// Update native video control player with desired playback time

 /// </summary>

 protected virtual void NativeSeek(DateTime startPlaybackTime)

 {

 _log.DebugFormat("{0}: NativeSeek - seek time: {1}", _deviceLabel,

startPlaybackTime);

 }

 protected virtual void NativeChangeSpeed(float speed)

 {

 _log.DebugFormat("{0}: NativeChangeSpeed to {1}", _deviceLabel,

speed);

 }

 /// <summary>

 /// Called when the media validation is performed asynchronously by SDK

 /// </summary>

 public void OnMediaValidated(DateTime actualStart, DateTime actualEnd,

DateTime startPlaybackTime)

 {

 //external method call - ensure we don't break the SM logic

 if (CurrentState == EPlaybackStates.MediaLoaded)

 {

 _log.DebugFormat(CultureInfo.InvariantCulture, "{0}:

Validated recorded media range from {1} to {2},

start playback from: {3}", _deviceLabel, actualStart,

actualEnd, startPlaybackTime);

 ActualStartTime = actualStart;

 ActualEndTime = actualEnd;

 _startPlaybackTime = startPlaybackTime;

 _seekTimer.Enabled = false;

 SwitchToState(EPlaybackStates.MediaValidated);

 ProcessCommand(EPlaybackFsmCommand.Play, false);

 }

 }

 /// <summary>

 /// Called when media validation fails (for example if SDK returns

irrelevant results or throws exceptions)

 /// </summary>

 public void OnMediaValidationFailure()

 {

 //external method call - ensure we don't break the SM logic

 if (CurrentState == EPlaybackStates.MediaLoaded)

 {

 _log.DebugFormat("{0}: Media Validation failed",

_deviceLabel);

 OnSeekFailed(true);

 }

 }

 private void SwitchToState(EPlaybackStates state)

 {

 _log.DebugFormat("{0}: Playback SM switching from {1} to {2}",

_deviceLabel, CurrentState, state);

 CurrentState = state;

 }

 [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Performance"

, "CA1822:MarkMembersAsStatic", Justification =

 "follow the event standard pattern")]

 private EventHandler<FsmSeekEventArgs>

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

153

CreateThrottledEventHandler(EventHandler<FsmSeekEventArgs> handler, TimeSpan

 throttle)

 {

 bool throttling = false;

 return (s, e) =>

 {

 if (throttling)

 {

 _log.DebugFormat("Seek {0} was ignored due to

throttling logic", e.SeekTime);

 return;

 }

 throttling = true;

 Task.Delay(throttle).ContinueWith(_ => throttling = false);

 };

 }

 //The handler of CmdRequest event

 private void ThrottleInvoker(object sender, FsmSeekEventArgs args)

 {

 _log.DebugFormat("{0}: Playback FSM, State '{1}', Command '{2}'",

_deviceLabel, CurrentState, args.Command);

 _seekTimePending = args.SeekTime;

 _speed = args.Speed;

 args.FsmAction.Invoke();

 }

 public void Dispose()

 {

 if (_seekTimer != null)

 {

 _seekTimer.Elapsed -= OnSeekTimeout;

 _seekTimer.Dispose();

 _seekTimer = null;

 }

 CmdRequest = null;

 }

 }

 }

Control Center ISDK Compatibility
The Control Center ISDK is a set of tools and interfaces exposed in Control Center to
create connectors. Essentially, it is a collection of types and interfaces related to
connectors.

Control Center DDK uses a versioning scheme to describe how API versions are
backwards-compatible with earlier versions of Control Center.

NOTE: IPSecurityCenter was renamed Control Center from version 5.25 onwards. From

version 5.30 onwards, Driver Development Kit (DDK) was renamed Integrations Software
Development Kit (ISDK).

Control Center ISDK starts at version 3.0. All subsequent versions are backward-
compatible.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

154

Each version of Control Center is compatible with one or more ISDK Versions.

Control
Center

DDK Version

 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9
3.1
0

3.1
1

3.1
2

5.0.x ✔

5.1.x ✔

5.2.x ✔ ✔

5.3.x ✔ ✔

5.4.x ✔ ✔ ✔

5.5.x ✔ ✔ ✔ ✔

5.6.x ✔ ✔ ✔ ✔ ✔

5.7.x ✔ ✔ ✔ ✔ ✔ ✔

5.8.x ✔ ✔ ✔ ✔ ✔ ✔

5.9.x ✔ ✔ ✔ ✔ ✔ ✔ ✔

5.10
 5.10.1
 5.10.2

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

5.10.3
 5.12

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

5.13 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

5.14.5 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

5.18 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

5.19 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

5.20 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

5.22 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

5.23 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

5.24 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

5.25 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

155

ISDK Versions
The following sections list the changes in the APIs for each released version of the DDK.

ISDK 3.0

ISDK 3.0 succeeded ISDK 2.4. From version 3.0, connectors must be capable of being
loaded into a 64-bit process to query their type information, as well as a 32-bit process.
Therefore, connectors must be built for any CPU and must not expose any 32-bit-only
types (such as types defined in a 32-bit-only 3rd party SDK, for example).

The IVideoControlWithDynamicOperatorActions interface definition was

added. The IVideoControlWithDynamicOperatorActions is an optional interface

implemented by a video control to expose additional actions other than the ones indicated
statically (by OperatorAction attribute on its methods).

namespace CNL.IPSecurityCenter.Driver.Video.DynamicOperatorActions

 {

 /// <summary>

 /// Optionally implemented by a video control to expose additional

actions other than the

 /// ones indicated statically (by OperatorAction attribute on its

methods).

 /// </summary>

 public interface IVideoControlWithDynamicOperatorActions

 {

 /// <summary>

 /// Raised by the video control to specify what actions it supports

 /// </summary>

 event EventHandler<DynamicOperatorActionsChangedEventArgs>

DynamicOperatorActionsChanged;

 /// <summary>

 /// NB - currently ignored by IPSC!

 /// </summary>

 event EventHandler<DynamicOperatorActionStateChangedEventArgs>

DynamicOperatorActionStateChanged;

 /// <summary>

 /// Executes one of the actions supported by the control (according

to the most recent

 /// DynamicOperatorActionsChanged event raised.

 /// </summary>

 /// <param name='name'>The name of the action to execute</param>

 void ExecuteDynamicOperatorAction(string name);

 }

 }

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

156

ISDK 3.1

ISDK 3.1 contains some new interfaces that connectors can optionally implement.

IVideoControlWithDynamicOperatorActions

You can implement this interface for a video control to expose additional actions other
than the ones indicated statically (by OperatorAction attribute on its methods).

{

 /// <summary>

 /// Optionally implemented by a video control to expose additional

actions other than the

 /// ones indicated statically (by OperatorAction attribute on its

methods).

 /// </summary>

 public interface IVideoControlWithDynamicOperatorActions

 {

 /// <summary>

 /// Raised by the video control to specify what actions it supports

 /// </summary>

 event EventHandler<DynamicOperatorActionsChangedEventArgs>

DynamicOperatorActionsChanged;

 /// <summary>

 /// NB - currently ignored by IPSC!

 /// </summary>

 event EventHandler<DynamicOperatorActionStateChangedEventArgs>

DynamicOperatorActionStateChanged;

 /// <summary>

 /// Executes one of the actions supported by the control (according

to the most recent

 /// DynamicOperatorActionsChanged event raised.

 /// </summary>

 /// <param name='name'>The name of the action to execute</param>

 void ExecuteDynamicOperatorAction(string name);

 }

 }

IDeviceOverridesLabel

Allows a device to stop the user changing its label. Normally, Control Center allows the
user to change the label of a device. However, a connector may control the label. In this
case, you do not want to allow a user to also change the label as the connector can
overwrite the label at any time, without warning.

A likely pattern is that a VMS connector may want to allow the user to decide if camera
device labels should be automatically updated from the external subsystem. In which case,
the connector's main server device could have a boolean property called, for example,
UseSubsystemCameraLabels, and the camera/child device can delegate its own

OverridesLabel property to that setting.

// <summary>

 /// Allows a device to stop the user changing its label.

 /// </summary>

 public interface IDeviceOverridesLabel

 {

 /// <summary>

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

157

 /// If true, IPSC will not allow the user to change the label of this

device, as the

 /// device itself may change the label at any time due to changes in

the subsystem.

 /// </summary>

 bool OverridesLabel { get; }

 }

DeviceOverridesChildOnlineState (Attribute)

This attribute, when applied, allows a parent device to control the online state of its child
devices. In other words, the devices do not automatically follow the enabled/disabled
state of the parent device and may stay in an alternate state when a parent device has it
state changed, rather that the default operation of following the parent device state. Child
devices of a device are defined as all the devices connected to it that do not implement
IConnectableDevice.

Normally, when a parent device is brought online, all its child devices have their online
states set to online, although this happens after an unpredictable delay. Where the
connector wishes to update its child device states to make them accurately reflect the
states of whatever real-world devices they represent, it has previously been necessary to
use a Thread.Sleep work-round to give Control Center enough time to finish setting the
states to online.

Now, the server device's contract can optionally have the attribute
DeviceOverridesChildOnlineState (no parameters). Only three state changes

are affected: Online, Warning and Custom, as they can describe a 'healthy' state.

CAUTION: There are two places a connector has to implement special code if it adds this
attribute to the server's contract:

 1. In the server's Connect method, it has to update each child device's state.

 2. On the child, it must handle the EnabledChanged event to also update that child

device's state when the device is Enabled.

This table summarises whether a parent's state change is propagated to its children,
depending on whether the default behavior has been overridden by applying this attribute
to the server device class.

State Default Overridden

Connecting No No

Online Yes No

Warning Yes No

Custom Yes No

Disabled Yes Yes

Failed Yes Yes

Offline Yes Yes

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

158

ISDK 3.2

ISDK 3.2 implements the following interfaces.

SupportedPreviousDriverAttribute

When there are datatype changes in properties between connector versions, this
attribute can be used to mitigate serialisation issues and allow objects conversion of types
between the old connector and the new connector. The Connector developer
documentation gives more detail on how to use this interface.

ISupportsPausingActivity

An interface to support notifying a connector when a tile is not active. When applied to a
device, implementation of this interface indicates that the connector supports some form
of pausing of its activity while still monitoring device state. It is intended to be used
primarily by video connectors, although, any data steaming device may be a candidate to
pause/resume the supplied data stream.

Typically, the functions of this interface are called when the UI framework knows that
whatever the connector is doing is currently not visible to the user (for example, a video
tile is not visible). Ideally, the pausing and resuming of activity should be implemented in
as efficient a way as possible.

/// <summary>

 /// Implementation of this interface indicates that the driver supports

some form

 /// of 'pausing' of its activity whilst still monitoring device state and

the like.

 /// It intended to be used by Video Drivers to pause/resume display of

video. Typically

 /// the functions of this interface will be called when the UI framework

knows that

 /// whatever the driver is doing is currently not visible to the user

(e.g. video

 /// tile is not visible). Ideally the pausing and resuming of activity

should be

 /// implemented in as efficient a way as possible.

 /// </summary>

 public interface ISupportsPausingActivity

Motion JPEG support

A set of three interfaces indicating a device that is capable of producing data streams that
meets the specification of Motion JPEG.

/// <summary>

 /// An open stream that is producing JPEG frames, implemented by a

driver.

 /// The caller to this interface is part of IPSC, not the driver.

 /// </summary>

 public interface IMotionJpegStream : IDisposable

 /// <summary>

 /// Implemented by a device (typically a camera) when it is capable of

streaming

 /// in MJPEG format.

 /// </summary>

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

159

 public interface IMotionJpegSource

 /// <summary>

 /// An object representing a single frame of video. Implement this

interface

 /// in a driver if you want to delay computing the frame image until it

is

 /// actually needed.

 /// </summary>

 public interface IMotionJpegFrame

ThrottledEventManager

ThrottledEventManager class added to support device connector event throttling. It
creates an event aggregation manager, where you can define the rate at which events are
sent to the rest of the Control Center systems. The throttling function and the event
generated are defined by you and events, with potential information on items, such as
number of events seen since last throttling action, can be added to the sent event.

namespace CNL.IPSecurityCenter.Driver.ThrottledEvents

 {

 /// <summary>

 ///

 /// </summary>

 public class ThrottledEventManager

 {

 private static readonly ThrottledEventManager _instance = new

ThrottledEventManager();

 private static readonly object _locker = new object();

 private static readonly int PollMSecsInterval = 100;

 private readonly Dictionary<Type, ThrottledEventManager.EventDefinition>

_eventDefinitions = new Dictionary<Type,

ThrottledEventManager.EventDefinition>();

 private Task _pollTask = (Task) null;

 private ThrottledEventManager() {}

 public static ThrottledEventManager Instance =>

ThrottledEventManager._instance;

 public void RegisterThrottledEvent<TD, TA>(

 int maxEventsPerSec,

 ThrottledEventManager.AggregateFunction<TD, TA> aggregateFunc,

 ThrottledEventManager.RaiseEventAction<TD, TA> raiseEventAction)

 where TD : IDevice

 where TA : DeviceEventArgs

 { … }

 public void RaiseEvent<TD, TA>(TD sender, TA args)

 where TD : IDevice

 where TA : DeviceEventArgs

 { … }

 private void StartPollLoop()

 { … }

 private void PollTask()

 { … }

 public delegate bool AggregateFunction<TD, TA>(TD dev1, TA args1, TD

dev2, TA args2)

 where TD : IDevice

 where TA : DeviceEventArgs;

 public delegate void RaiseEventAction<TD, TA>(TD sender, TA args)

 where TD : IDevice

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

160

 where TA : DeviceEventArgs;

 }

 }

 namespace CNL.IPSecurityCenter.Driver.ThrottledEvents

 {

 public IDevice Sender { get; set; }

 public DeviceEventArgs Event { get; set; }

 public DateTime NextEventRaiseTime { get; set; }

 public bool Sent { get; set; }

 }

 namespace CNL.IPSecurityCenter.Driver.ThrottledEvents

 {

 private class EventDefinition

 {

 public IList<ThrottledEventManager.QueuedEvent> Queued =

 (IList<ThrottledEventManager.QueuedE

vent>)

 New

List<ThrottledEventManager.QueuedEvent>();

 public EventDefinition(

 int minMSecBetweenEvents,

 ThrottledEventManager.AggregateFunction<IDevice, DeviceEventArgs>

aggregateFunc,

 ThrottledEventManager.RaiseEventAction<IDevice, DeviceEventArgs>

raiseEventAction)

 { … }

 public int MinMSecBetweenEvents { get; }

 public ThrottledEventManager.AggregateFunction<IDevice,

DeviceEventArgs> AggregateFunc

 { get; }

 public ThrottledEventManager.RaiseEventAction<IDevice,

DeviceEventArgs> RaiseEventAction

 { get; }

 }

 }

ISDK 3.3

ISDK 3.3 implements two Event interfaces, both associated with displaying event
information on the time-bar of the Video Connection Manager (VCM) display.

ITimebarDisplayAlwaysEvent

When a connector event implements this interface (and it only make senses for events on
cameras), whenever this event is raised, it will always be displayed as a dot on a timebar, if
that camera is being shown in playback mode.

/// <summary>

 /// This event will always be displayed as a dot on timebar in playback

mode

 /// </summary>

 [DesignerVisibleEventInterface]

 [DisplayName(DeviceConstants.ResourcePath,

'DisplayNameTimebarDisplayAlwaysEvent', typeof(ITimebarDisplayAlwaysEvent))]

 [Description(DeviceConstants.ResourcePath, 'DescriptionTimebarDisplayAlw

aysEvent', typeof(ITimebarDisplayAlwaysEvent))]

 public interface ITimebarDisplayAlwaysEvent

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

161

ITimebarDisplayOptionalEvent

When a connector's event implements this interface (and it only makes sense only for
events on cameras), whenever this event is raised, it can be displayed as a dot on
timebar, if that camera is being shown in playback mode. A requirement of its use is that
you have to configure on the camera object in its property grid what optional events
should be displayed on the VCM Timebar. The property on a Camera is called
'TimebarEvents'

/// <summary>

 /// This event can be diplayed as a dot on timebar in playback mode

 /// </summary>

 [DesignerVisibleEventInterface]

 [DisplayName(DeviceConstants.ResourcePath,

'DisplayNameTimebarDisplayOptionalEvent',

 typeof(ITimebarDisplayOptionalEvent))]

 [Description(DeviceConstants.ResourcePath,

'DescriptionTimebarDisplayOptionalEvent',

 typeof(ITimebarDisplayOptionalEvent))]

 public interface ITimebarDisplayOptionalEvent

ISDK 3.4

This version implements a number of new interfaces and types to support display of
position-aware entities on schematic scenes.
 These mirror the entities for geo-spatial connectors.

IPositionAware

When this interface is applied to a device or object it allows Control Center to plot the
object on a schematic screen display.

namespace CNL.IPSecurityCenter.Driver.Types.PositionAware

 {

 /// <summary>Defines a position aware object</summary>

 [ServiceContract]

 [DesignerVisible]

 [DisplayName("CNL.IPSecurityCenter.Driver.Strings",

"DisplayNameIPositionAware", typeof (IPositionAware))]

 [Description("CNL.IPSecurityCenter.Driver.Strings",

"DescriptionIPositionAware", typeof (IPositionAware))]

 public interface IPositionAware : IDevice

 {

 /// <summary>

 /// The Positional Reference Identifier that the coordinates are

using

 /// </summary>

 [CategoryPosition]

 [DisplayName("CNL.IPSecurityCenter.Driver.Strings",

"DisplayNamePositionalReferenceIdentifier", typeof (IPositionAware))]

 [Description("CNL.IPSecurityCenter.Driver.Strings",

"DisplayNamePositionalReferenceIdentifier", typeof (IPositionAware))]

 int PositionalReferenceIdentifier { [OperationContract] get;

[OperationContract] set; }

 /// <summary>The X Axis coordinate value.</summary>

 [CategoryPosition]

 [DisplayName("CNL.IPSecurityCenter.Driver.Strings", "DisplayNameX",

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

162

typeof (IPositionAware))]

 [Description("CNL.IPSecurityCenter.Driver.Strings", "DisplayNameX",

typeof (IPositionAware))]

 double X { [OperationContract] get; [OperationContract] set; }

 /// <summary>The Y Axis coordinate value.</summary>

 [CategoryPosition]

 [DisplayName("CNL.IPSecurityCenter.Driver.Strings", "DisplayNameY",

typeof (IPositionAware))]

 [Description("CNL.IPSecurityCenter.Driver.Strings", "DisplayNameY",

typeof (IPositionAware))]

 double Y { [OperationContract] get; [OperationContract] set; }

 /// <summary>The Z Axis coordinate value.</summary>

 [CategoryPosition]

 [DisplayName("CNL.IPSecurityCenter.Driver.Strings", "DisplayNameZ",

typeof (IPositionAware))]

 [Description("CNL.IPSecurityCenter.Driver.Strings", "DisplayNameZ",

typeof (IPositionAware))]

 double Z { [OperationContract] get; [OperationContract] set; }

 }

 }

IPositionAwareEvent

When applied against an event, IPositionAwareEvent provides location speed and
heading information into Control Center allowing the system to update the schematic
object information based on VRPs.

namespace CNL.IPSecurityCenter.Driver.Types.PositionAware

 {

 /// <summary>Defines a locatable event</summary>

 [DesignerVisibleEventInterface]

 [DisplayName("CNL.IPSecurityCenter.Driver.Strings",

"DisplayNamePositionAwareEvent", typeof (IPositionAwareEvent))]

 [Description("CNL.IPSecurityCenter.Driver.Strings",

"DescriptionPositionAwareEvent", typeof (IPositionAwareEvent))]

 public interface IPositionAwareEvent

 {

 /// <summary>

 /// The Positional Reference Identifier for the system that the

coordinates are using

 /// </summary>

 [CategoryPosition]

 [DisplayName("DisplayNamePositionalReferenceIdentifier", typeof

(IPositionAwareEvent))]

 [Description("DisplayNamePositionalReferenceIdentifier", typeof

(IPositionAwareEvent))]

 int PositionalReferenceIdentifier { get; set; }

 /// <summary>The X Axis Value.</summary>

 [CategoryPosition]

 [DisplayName("DisplayNameX", typeof (IPositionAwareEvent))]

 [Description("DisplayNameX", typeof (IPositionAwareEvent))]

 double? X { get; set; }

 /// <summary>The Y Axis Value.</summary>

 [CategoryPosition]

 [DisplayName("DisplayNameY", typeof (IPositionAwareEvent))]

 [Description("DisplayNameY", typeof (IPositionAwareEvent))]

 double? Y { get; set; }

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

163

 /// <summary>The Z Axis Value.</summary>

 [CategoryPosition]

 [DisplayName("DisplayNameZ", typeof (IPositionAwareEvent))]

 [Description("DisplayNameZ", typeof (IPositionAwareEvent))]

 double? Z { get; set; }

 /// <summary>Heading Value.</summary>

 [CategoryPosition]

 [DisplayName("DisplayNameHeading", typeof (IPositionAwareEvent))]

 [Description("The heading of this track", typeof (IPositionAwareEvent))]

 double? Heading { get; set; }

 /// <summary>Speed Value.</summary>

 [CategoryPosition]

 [DisplayName("DisplayNameSpeed", typeof (IPositionAwareEvent))]

 [Description("The speed of this track", typeof (IPositionAwareEvent))]

 double? Speed { get; set; }

 }

 }

IPositionAwareTracking

This is an extension to the IPositionAware interface and allows the object to provide a
tracked position on the schematic scene

namespace CNL.IPSecurityCenter.Driver.Types.PositionAware

 {

 /// <summary>Defines a positional Tracking Object</summary>

 [ServiceContract]

 [DesignerVisible]

 [DisplayName("CNL.IPSecurityCenter.Driver.Strings",

"DisplayNameIPositionAwareTracking", typeof (IPositionAwareTracking))]

 [Description("CNL.IPSecurityCenter.Driver.Strings",

"DescriptionIPositionAwareTracking", typeof (IPositionAwareTracking))]

 public interface IPositionAwareTracking : IPositionAware, IDevice

 {

 /// <summary>Last update in UTC format</summary>

 [CategoryPosition]

 [DisplayName("CNL.IPSecurityCenter.Driver.Strings",

"DisplayNameLastUpdateUtc", typeof (IPositionAwareTracking))]

 [Description("CNL.IPSecurityCenter.Driver.Strings",

"DescriptionLastUpdateUtc", typeof (IPositionAwareTracking))]

 DateTime LastUpdateUtc { [OperationContract] get; [OperationContract]

set; }

 /// <summary>Last heading of the device</summary>

 [CategoryPosition]

 [DisplayName("CNL.IPSecurityCenter.Driver.Strings",

"DisplayNameHeading", typeof (IPositionAwareTracking))]

 [Description("CNL.IPSecurityCenter.Driver.Strings",

"DescriptionHeading", typeof (IPositionAwareTracking))]

 double? Heading { [OperationContract] get; [OperationContract] set; }

 /// <summary>Last heading of the device</summary>

 [CategoryPosition]

 [DisplayName("CNL.IPSecurityCenter.Driver.Strings", "DisplayNameSpeed",

typeof (IPositionAwareTracking))]

 [Description("CNL.IPSecurityCenter.Driver.Strings", "DescriptionSpeed",

typeof (IPositionAwareTracking))]

 double? Speed { [OperationContract] get; [OperationContract] set; }

 /// <summary>Raised when an object's Position has changed</summary>

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

164

 [DeviceEvent]

 [DisplayName("CNL.IPSecurityCenter.Driver.Strings",

"DisplayNamePositionChanged", typeof (IPositionAwareTracking))]

 [Description("CNL.IPSecurityCenter.Driver.Strings",

"DescriptionPositionChanged", typeof (IPositionAwareTracking))]

 event EventHandler<PositionChangedEventArgs> PositionChanged;

 }

 }

ITrackablePositionAwareEvent

This is an extension to the IPositionAwareEvent interface that adds a unique TrackId to an
event and allows Control Center to maintain a track associated with changes in position of
the specified object.

namespace CNL.IPSecurityCenter.Driver.Types.PositionAware

 {

 /// <summary>Defines a trackable event</summary>

 [DesignerVisibleEventInterface]

 [DisplayName("CNL.IPSecurityCenter.Driver.Strings",

"DisplayNameTrackablePositionAwareEvent", typeof

(ITrackablePositionAwareEvent))]

 [Description("CNL.IPSecurityCenter.Driver.Strings",

"DescriptionTrackablePositionAwareEvent", typeof

(ITrackablePositionAwareEvent))]

 public interface ITrackablePositionAwareEvent : IPositionAwareEvent

 {

 /// <summary>Id of a track</summary>

 [CategoryPosition]

 [DisplayName("DisplayNameTrackId", typeof

(ITrackablePositionAwareEvent))]

 [Description("Identifier of this track", typeof

(ITrackablePositionAwareEvent))]

 string TrackId { get; set; }

 }

 }

PositionChangedEventArgs

Event arguments used in notifying Control Center that the device location has been
updated.

namespace CNL.IPSecurityCenter.Driver.Types.PositionAware

 {

 /// <summary>

 /// Event Arguments used when a device has changed position

 /// </summary>

 public class PositionChangedEventArgs : DeviceEventArgs

 {

 /// <summary>Position Changed Event Args Constructor</summary>

 public PositionChangedEventArgs(IDevice device)

 : base(device.Identifier)

 { }

 /// <summary>Position Changed Event Args Constructor</summary>

 public PositionChangedEventArgs(IDevice device, DateTime date) :

base(device.Identifier, date)

 { }

 /// <summary>DateTime the movement event occured</summary>

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

165

 [CategoryPosition]

 [DisplayName("DisplayNameLastUpdateUtc", typeof

(PositionChangedEventArgs))]

 [Description("The date time of this objects last movement", typeof

(PositionChangedEventArgs))]

 public DateTime UpdatedDateTime { get; set; }

 /// <summary>

 /// The Positional Reference Identifier for the system that the

coordinates are using

 /// </summary>

 [CategoryPosition]

 [DisplayName("DisplayNamePositionalReferenceIdentifier", typeof

(PositionChangedEventArgs))]

 [Description("The Positional Reference Identifier of the co-ordinates",

typeof (PositionChangedEventArgs))]

 public int PositionalReferenceIdentifier { get; set; }

 /// <summary>The current Y of the object</summary>

 [CategoryPosition]

 [DisplayName("DisplayNameY", typeof (PositionChangedEventArgs))]

 [Description("The last Y of this object", typeof

(PositionChangedEventArgs))]

 public double Y { get; set; }

 /// <summary>The current X of the object</summary>

 [CategoryPosition]

 [DisplayName("DisplayNameX", typeof (PositionChangedEventArgs))]

 [Description("The last X of this object", typeof

(PositionChangedEventArgs))]

 public double X { get; set; }

 /// <summary>The current Z of the object</summary>

 [CategoryPosition]

 [DisplayName("DisplayNameZ", typeof (PositionChangedEventArgs))]

 [Description("The last Z of this object", typeof

(PositionChangedEventArgs))]

 public double Z { get; set; }

 /// <summary>The current heading of the object</summary>

 [CategoryPosition]

 [DisplayName("DisplayNameHeading", typeof (PositionChangedEventArgs))]

 [Description("The last heading of this object", typeof

(PositionChangedEventArgs))]

 public double? Heading { get; set; }

 /// <summary>The current speed of the object</summary>

 [CategoryPosition]

 [DisplayName("DisplayNameSpeed", typeof (PositionChangedEventArgs))]

 [Description("The last speed of this object", typeof

(PositionChangedEventArgs))]

 public double? Speed { get; set; }

 }

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

166

ISDK 3.5

ISDK 3.5 implements the following attributes and interfaces.

x64BitCompatibilityAttribute

This attribute is applied to a video control / device class, to allow hosting in a 64-bit
process if possible. This attribute should only be applied if the third-party SDK supports
running as a 64-bit process.

[AttributeUsage(AttributeTargets.Class)]

 public sealed class x64BitCompatibilityAttribute : Attribute

 {

 }

IVideoControlLifetimeManager (aka Lifetime Manager)

Types that implement this are instantiated when the Video Control Manager starts-up.
Everbridge recommends that this be used by CCTV drivers for pre-loading and caching
connections during login before the first video is displayed. Caching SDK connections
should be optional.

When this interface is implemented, it effectively leaves a permanent connection to the
underlying Video system, even when there are no actively displayed video streams. The
consequence of this is that no third-party SDK initialization is required on initial video
display, removing any delay associated with that initialization.

NOTE: Be aware that, depending on the licensing model of the third-party SDK, one
connection license is used at all times, for each client and VCM which may require the
purchase of additional licenses.

public interface IVideoControlLifetimeManager : IDisposable

 {

 /// <summary>

 /// This method will be called when the Video Control Manager is

started during login and re-starting if crashed

 /// </summary>

 void Initialise(IDeviceRepository deviceRepository);

 }

ISwitchCamera

ISwitchCamera should be implemented on a video control to optimise

performance for switching cameras.

public interface ISwitchCamera

 {

 /// <summary>

 /// Called on the Video Control when a device of the same type is

being switched

 /// </summary>

 void SwitchCamera(Guid deviceIdentifier);

 }

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

167

ISDK 3.6

ISDK 3.6 implemented the following interfaces.

DeviceCategoryType

Three additional device categories to support licensing have been added to the device
types.

/// <summary>

 /// The device that has Geographical positions

 /// </summary>

 GIS

 /// <summary>

 /// The device is a Perimeter Intrusion Detection System

 /// </summary>

 PIDS

 /// <summary>

 /// Hazmat And CBRNe

 /// </summary>

 CBRNe

BitArithmeticHelper

A helper class in CNL.IPSecurityCenter.Driver.Utility dll for various bit operations, it
allows for the following fuctionalities:

• Merge arrays
• Set, check and reset a bit in a byte or in a byte array
• Create a short number out of 2 bytes
• Get a printable version for a byte array
• Create a copy of a part of an array

Operation Scheduler

Operation Scheduler has the following use cases.

• Implementation of asynchronous APIs/protocols where the subsystem notifies
that the command/operation is completed. However, some commands must be
executed in a strict synchronisation (because the subsystem may require it or the
next operation is dependent on the previous one).

• Inconsistent asynchronous APIs/SDKs in which the context of a command has to
be saved (as a command ID, for example).

Operation Scheduler has the following terms.

• Operation - an atomic unit of work, executed synchronously (only one Operation is
executed at any given time). An Operation has a unique ID, a Timeout (setting the
execution time limit), the execution result can be True on success or False on
failure.

• Scenario - a sequence (linked list) of Operation instances, only one Scenario can
execute at a time.

o Operation Scheduler holds a queue of scheduled Operations.
o Timeout must be set for each Operation.
o Operation Scheduler must initialize a set of Operations and Scenarios.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

168

o If Scenario has operations of a same type, you must create a separate
Operation object for each Operation.

o Operations must not be shared between Scenarios, it can lead to
parameters overriding whether an operation has failed or succeeded,
and the Operation result may break current Scenario execution. If it's
decided an Operation Failure doesn't cause a Scenario to abort, the
Scenario is still reported as completed successfully.

o You cannot cancel Operations or Scenarios after scheduling.

Operation Scheduler has the following list of classes.

• OperationScheduler
• Operation
• Scenario
• ScenarioEventArgs
• ScenarioStatus

ISDK 3.7

To support the independent ability of device connectors (sometimes called Matrix
Connectors) to coordinate object detection and tracking the following capabilities were
added to the ISDK.

DeviceInterfaceType Additions

Two new interface types introduced into the DeviceInterfaceType enum. The first is

VideoPlayback which is intended for devices to advertise connections providing

VideoPlayback features from another Matrix connector, and PtzControl providing Ptz

and SlewToCue features.

// Summary:

 // The interface is a video playback.

 VideoPlayback = 14,

 // Summary:

 // The interface is a Camera Pan Tilt Zoom Control.

 PtzControl = 15

IOrientationAware & IGeoSpatialOrientationAware Interfaces

Two new interfaces support devices reporting their orientation. This allows devices to
have dynamically drawn viewsheds within Geographical scenes within the application.

IOrientationAware

An interface for devices that are orientated based on relative orientation.

NOTE: The relative orientation of the device is considered the device's orientation when
facing forward along a horizontal plane. An example would be for a camera, the lens facing

'forward' and the camera body being horizontal.

public interface IOrientationAware : IDevice

 {

 /// <summary>

 /// Raised when the device's orientation is changed. For initial

purposes, devices

 /// are not expected to exceed raising a maximum of 10 notifications

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

169

per second.

 /// When the device's <see cref='SupportsFieldOfView'/> is True, the

event MUST

 /// populate the Field of View associated fields.

 /// </summary>

 event EventHandler<DeviceOrientationChangedEventArgs>

DeviceOrientationChanged;

 /// <summary>

 /// Gets the current device relative orientation.

 /// </summary>

 [System.ComponentModel.Browsable(false)]

 DeviceOrientation CurrentOrientation { get; }

 /// <summary>

 /// Gets whether the <see cref='CurrentOrientation'/> also reports

the Field of View

 /// of the device using the <see cref='DeviceOrientation'/> derived

object.

 /// </summary>

 bool SupportsFieldOfView { get; }

 /// <summary>

 /// Gets the normalized percentage of a complete rotation supporting

0.0 to 1.0.

 /// The angle is measured from forward facing, in a clockwise

direction, meaning

 /// 0.25 is 90 degrees clockwise, 0.5 is 180 degrees and 1.0 is a

full rotation

 /// (360 degrees).

 /// </summary>

 double CurrentOrientationAzimuth { get; }

 /// <summary>

 /// Gets the normalized percentage of a complete rotation supporting

-0.25 to 0.25.

 /// The angle is measured from horizontal, starting in an upwards

direction, meaning

 /// 0.25 is 90 degrees from horizontal (vertically straight up), and

-0.25 is -90 or 270

 /// degrees from horizontal (vertically straight down).

 /// </summary>

 double CurrentOrientationElevation { get; }

 /// <summary>

 /// Gets the normalized percentage of a complete arc supporting 0.0

to 1.0. The range

 /// is considered centered relative to configured orientation. This

means a arc of 0.25

 /// would be a 90 degree horizontal arc centered at the associated

orientation, with

 /// +-45 degree field of view from the orientation.

 /// </summary>

 double? CurrentFieldOfViewAzimuthArc { get; }

 /// <summary>

 /// Gets the normalized percentage of a complete arc supporting 0.0

to 1.0. The range

 /// is considered centered relative to configured orientation. This

means a arc of 0.25

 /// would be a 90 degree horizontal arc centered at the associated

orientation, with

 /// +-45 degree field of view from the orientation.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

170

 /// </summary>

 double? CurrentFieldOfViewElevationArc { get; }

 /// <summary>

 /// Gets the minimum usable range of the field of view in meters.

This explicitly indicates

 /// that the field of view may not covered the area between the

device and the minimum range.

 ///

 /// This may be calculated by the driver based on reasonable

knowledge of the capabilities

 /// of the device (ie. the configured minimum range on a radar or the

known focus point

 /// on a camera). This may also be calculated based on a static

configuration exposed to

 /// the user and manipulated by the known state (ie. zoom) of the

device.

 ///

 /// This is an optional field, even when the field of view is

available.

 /// </summary>

 double? CurrentFieldOfViewMinimumRange { get; }

 /// <summary>

 /// Gets the maximum usable range of the field of view in meters.

 ///

 /// This may be calculated by the driver based on reasonable

knowledge of the capabilities

 /// of the device (ie. the configured maximum range on a radar or the

known focus point

 /// on a camera). This may also be calculated based on a static

configuration exposed to

 /// the user and manipulated by the known state (ie. zoom) of the

device.

 ///

 /// This is an optional field, even when the field of view is

available.

 /// </summary>

 double? CurrentFieldOfViewMaximumRange { get; }

 }

IGeoSpatialOrientationAware

This interface provides the orientation alignment to the Geo-Spatial environment so the
device can be displayed correctly orientated within geographical scenes and is required to
be used alongside IGeoSpatialAwareWithAlt to correctly position the device.

public interface IGeoSpatialOrientationAware : IOrientationAware

 {

 /// <summary>

 /// Gets the normalized percentage of a complete rotation supporting

0.0 to 1.0.

 /// The angle is measured from forward facing, in a clockwise

direction, meaning

 /// 0.25 is 90 degrees clockwise, 0.5 is 180 degrees and 1.0 is a

full rotation

 /// (360 degrees).

 ///

 /// Example for this is a camera base-orientated due east would have

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

171

a value of +0.25

 /// indicating the 'front' of the device is facing east and all

orientation is considered

 /// relative to this direction.

 /// </summary>

 double BaseOrientationYawFromNorth { get; set; }

 /// <summary>

 /// Gets the normalized percentage of a complete rotation supporting

-0.25 to 0.25.

 /// The angle is measured from the horizontal surface of the earth,

starting in an

 /// upwards direction, meaning 0.25 is 90 degrees from horizontal

(vertically straight

 /// up), and -0.25 is -90 or 270 degrees from horizontal (vertically

straight down).

 ///

 /// Limited to the range -0.25 and +0.25 - for inverted devices use

 /// <see cref='BaseOrientationRoll'/>. This value indicates the

elevation

 /// angle difference between the front of the device (relative to its

tilt point)

 /// and the surface of the earth. This is only required for cameras

not mounted on a

 /// flat levelled surface - ie. device mounted on sloped roof)

 /// </summary>

 double BaseOrientationPitch { get; }

 /// <summary>

 /// Gets the normalized percentage of a complete rotation supporting

-0.5 to 0.5.

 /// The angle is measured from the horizontal surface of the earth,

along the axis

 /// formed between the center and front of the device, meaning 0.25

is rolled 90

 /// degrees clockwise through this axis, and -0.25 is rolled 90

degrees anti-clockwise

 /// through this axis.

 ///

 /// Limited to the range -0.5 and +0.5. This value indicates the

elevation angle

 /// difference between the right of the device (relative to its tilt

point) and the

 /// surface of the earth. This is only required for cameras not

mounted on a flat

 /// leveled surface - ie. device mounted on side of a building or

inverted on ceiling)

 /// </summary>

 double BaseOrientationRoll { get; }

 }

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

172

Geo Spatial Extensions

Additional interface extensions are available for Geo Spatial and tracking devices.

IGeoSpatialAwareWithAlt

Extension to the IGeoSpatialAware adds the Altitude field to IGeoSpatialAware.

public interface IGeoSpatialAwareWithAlt

 {

 /// <summary>

 /// Altitude from Mean Sea Level (MSL) in meters.

 /// </summary>

 double? Altitude { get; set; }

 }

IGeoSpatialAwareWithAltEvent

Extension for IGeoSpatialAwareEvent adds Altitude and Vertical Rate fields to

reported Geo Spatial events.

public interface IGeoSpatialAwareWithAltEvent

 {

 /// <summary>

 /// Altitude from Mean Sea Level (MSL) in meters.

 /// </summary>

 double? Altitude { get; set; }

 /// <summary>

 /// Vertical Rate Value in meters per second. This is the rate of

altitude

 /// change where positive values means ascending and negative is

descending.

 /// </summary>

 double? VerticalRate { get; set; }

 }

IRelativeGeoSpatialAwareEvent

Extension for IGeoSpatialAwareEvent where the reporting source also provides a

Relative Position in reported Geo Spatial events.

/// </summary>

 /// Interface for devices that can PTZ to follow a track - Slew to Cue.

 /// </summary>

 public interface ISlewToCue : IDevice

 {

 /// <summary>

 /// Raised when the device starts following a track.

 /// </summary>

 event EventHandler<SlewToCueStartedEventArgs> SlewToCueStarted;

 /// <summary>

 /// Raised when the device stops following a track.

 /// </summary>

 event EventHandler<SlewToCueStoppedEventArgs> SlewToCueStopped;

 /// <summary>

 /// Start tracking the object assigned to the given track ID.

 /// </summary>

 /// <param name='trackId'>Track ID</param>

 /// <returns>True if started successfully, False if unsuccessful (for

example due to invalid Track ID).</returns>

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

173

 bool StartSlewToCue(string trackId);

 /// <summary>

 /// Stops tracking the object which is currently being tracked by the

device.

 /// </summary>

 void StopSlewToCue();

 }

ISlewToCue Interface

An interface to support device which can slew to cue - automatically follow a track using
PTZ. This has start/stop methods and events raised when the device starts/stops
following a track.

public interface IRelativeGeoSpatialAwareEvent

 {

 /// <summary>

 /// Azimuth angle in decimal degrees relative to True North

 /// </summary>

 double? Azimuth { get; set; }

 /// <summary>

 /// Elevation angle in decimal degrees relative to the horizontal

plane of the

 /// surface of the earth.

 /// </summary>

 double? Elevation { get; set; }

 /// <summary>

 /// Range in meters.

 /// </summary>

 double? Range { get; set; }

 }

IRadar and IGeofence Interfaces

Interfaces to categorise two new device types; Radar devices and another interface to
define a standard Geofence object.

IRadar

 /// <summary>

 /// Radar Device object type

 /// </summary>

 public interface IRadar : IDevice

 {

 }

The GeofenceGeometryType enum type supports Area, Line, and Point geometry types
and, as of IPSecurityCenter 5.10, renders the associated GeofencePoints points as such.
GeoPosition provides a basic Lat, Long, Alt? (in other words, nullableable) data type for
passing WGS84 coordinates.

/// </summary>

 /// A Geofence Device object

 /// </summary>

 public interface IGeofence : IDevice

 {

 /// <summary>

 /// The reference identifier for the Geofence

 /// </summary>

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

174

 string GeofenceId { [OperationContract] get; [OperationContract] set;

}

 /// <summary>

 /// The geometry type associate with this geofence

 /// </summary>

 GeofenceGeometryType GeofenceGeometryType { [OperationContract] get;

[OperationContract] set; }

 /// <summary>

 /// The points that delimit the boundary of the zone with the last

point being

 /// connected to the first point.

 /// </summary>

 [System.ComponentModel.Browsable(false)]

 List<GeoPosition> GeofencePoints { get; set; }

 }

ISDK 3.8

ISDK 3.8 implemented IDeviceRepository Additions. The interface IDeviceRepository has
been extended with a new method ReadStale<TContract>(Guid identifier).

This allows you to use the VCM (Video Display interface) to get all device properties in a
single call to Connection Manager. The trade off is the properties are not live as they
would be if you used the regular Read<TContract>(Guid identifier) where a

proxy to the live instance in Connection Manager is returned.

/// <summary>

 /// Interface for repositories used for retrieving device objects.

 /// </summary>

 public interface IDeviceRepository : IDeviceService, IDisposable

 {

 /// <summary>

 /// Gets a device using the identifier for the device.

 /// </summary>

 /// <typeparam name='TContract'>The contract type for the device

service.</typeparam>

 /// <param name='identifier'>The identifier of the device.</param>

 /// <returns>Returns a static version of the device with all

properties pre-cached.</returns>

 [SuppressMessage('Microsoft.Design',

'CA1004:GenericMethodsShouldProvideTypeParameter')]

 TContract ReadStale<TContract>(Guid identifier);

 }

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

175

ISDK 3.9

DDK 3.9 extended the use of the x64BitCompatibilityAttribute attribute to

allow the attribute to be set at the assembly level. This must be used to signify that the
connector supports running in a 64-bit processes.

NOTE: NOTE: If the x64BitCompatibilityAttribute is applied to an assembly,

then it is assumed the connector only supports 64-bit unless accompanied by the
x86CompatibilityAttribute on the assembly. All connectors with no

x64BitCompatibilityAttribute attribute on the assembly are assumed to have the

x86CompatibilityAttribute and run in 32-bit processes. This means there is no

requirement to update existing connectors. The effect of the

x64BitCompatibilityAttribute attribute on a driver assembly is that it allows the

driver support devices to work in a 64-bit Connection Manager (new to IPSecurityCenter
5.13) and, unless accompanied by the x86CompatibilityAttribute, the driver

support devices will not work within the standard 32-bit Connection Manager.

x64BitCompatibilityAttribute Attribute

The x64BitCompatibilityAttribute has the following classes and assemblies.

• Class - Applied to Video Control/Device class in order for the device to be hosted
within a 64-bit VCM. Only required if not applied to the assembly.

• Assembly - Applied to drivers that support running in 64-bit processes (both within
VCM and within Connection Manager)

x86CompatibilityAttribute Attribute

The x86CompatibilityAttibute attribute has an assembly that is applied to

connectors that support running in 32-bit processes (both within VCM and within
Connection Manager). It is assumed for all drivers without
x64BitCompatibilityAttribute attribute on the assembly. It must be added to

any driver that has the x64BitCompatibilityAttribute attribute on the assembly

that still supports running in a 32-bit process, otherwise the driver is assumed to be 64-bit
compatible only.

ISDK 3.10

ISDK 3.10 adds the following new features.

Logging Utility

A new logging utility allows you to change logging level on the fly and on a per device
basis.

Packaging Connector A With Dependencies Having White Spaces

Added support for packaging connector with dependencies having white spaces in the file
name (by escaping spaces).

Common Fire Panel Additions

As part of creating a template to ease fire panel development, new built-in interfaces and
enums have been added.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

176

Built-in Interfaces Properties Events

IFirePanelDevice PanelId (string)

AlarmStateChange

ConfigurationChange

OnlineStateChange

IFireZoneDevice
PanelId (string)
ZoneId (string)

AlarmStateChange

IFireSwitchDevice

PanelId (string)
ZoneId (string)
SwitchId (string)

SwitchPositionChange

IFireLoopDevice

PanelId (string)
ZoneId (string)
DeviceId (string)
LoopNumber (int)

OnlineStateChange

EnabledChange

(Used to notify when the device has
been disabled on the native system,
not IPSecurityCenter)

IFireOutputTypeDevice FireOutputStateChange

IFireInputTypeDevice FireInputStateChange

Enumerations

The following enumerations are available.

Enumerations Description

Alarm State
• Normal
• InAlarm

DataType

Used to identify what kind of data an input is providing.

• Analog
• Digital
• String

EnabledState
• Disabled
• Enabled

OnlineState
• Offline
• Online

OutputState
• On
• Off

SwitchState
• On
• Off

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

177

Event Properties

The following event properties are available.

Property Description

AlarmStateChange

Used to notify when a device goes into/out of alarm. Can be raised
against a Panel or a Zone device.
 This event implements IGeoSpatialAwareEvent and

IGeoSpatialAwareWithAltEvent interfaces.

/// <summary>

 /// Current Alarm state of the device

 /// </summary>

 public AlarmState AlarmState { get; set; }

ConfigurationChange

Used to notify when native configuration has changed.

EnabledChange

Used to notify when the enabled state of the device has changed (Device
has been enabled natively, not in IPSecurityCenter). This event
implements IGeoSpatialAwareEvent and

IGeoSpatialAwareWithAltEvent interfaces.

/// <summary>

 /// Current enabled state of the device

 /// </summary>

 public EnabledState EnabledState { get; set; }

FireInputStateChange

Notifies about the change of value in any of the input type devices. This
event implements IGeoSpatialAwareEvent and

IGeoSpatialAwareWithAltEvent interfaces.

/// <summary>

 /// Analog value provided by the device

 /// </summary>

 public float AnalogValue { get; set; }

 /// <summary>

 /// Digital value provided by the device

 /// </summary>

 public int DigitalValue { get; set; }

 /// <summary>

 /// String value provided by the device

 /// </summary>

 public string StringValue { get; set; }

 /// <summary>

 /// Type of data provided by the device

(analog/digital/string)

 /// </summary>

 public DataType DataType { get; set; }

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

178

FireOutputStateChange

Notifies about a change of value in an output device (Beacon on/off and
so on.) This event implements IGeoSpatialAwareEvent and

IGeoSpatialAwareWithAltEvent interfaces.

/// <summary>

 /// Current state of the output

 /// </summary>

 public OutputState State { get; set; }

OnlineStateChange

Notifies about a change in the online state of a device. This event
implements IGeoSpatialAwareEvent and

IGeoSpatialAwareWithAltEvent interfaces.

/// <summary>

 /// Raised when a device's online state changes

 /// </summary>

 public OnlineState OnlineState { get; set; }

SwitchPositionChange

Notifies about a change in the position of a switch. This event
implements IGeoSpatialAwareEvent and
IGeoSpatialAwareWithAltEvent

/// <summary>

 /// Raised when a switch reports a changed position.

 /// </summary>

 public SwitchState SwitchState { get; set; }

ISDK 3.11

Deprecated

ISDK 3.12

ITrackSourceAwareEvent is implemented. ITrackSourceAwareEvent is an

extended version of IGeoSpatialAwareEvent. This new event interface allows a

device which does not generate tracks to raise a track-related event and still provide the
Track Source Device so the correct track can be put into an alert state if this event causes
an alert-state alarm.

/// <summary>

 /// Defines an event which is raised in relation to a track on the map, but

 /// is raised by a different device than the track source. This event

provides the

 /// Track Source as well as the Track Identifier so the correct track can be

alerted.

 ///

 /// It is expected that the event populates the geo-spatial properties of

the event

 /// based on the location of the track causing the event.

 ///

 /// An example of this used would be a geo-fence raising an event when a

track has

 /// approached/entered/exited it, and the track may need to be alerted along

with the

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

179

 /// geo-fence itself. The track identifier and the identifier of the radar

generating

 /// the track are included in the event so IPSecurityCenter can correctly

identify the

 /// associated track.

 /// </summary>

 [DesignerVisibleEventInterface]

 [DisplayName(DeviceConstants.ResourcePath,

"DisplayNameITrackSourceAwareEvent", typeof(ITrackSourceAwareEvent))]

 [Description(DeviceConstants.ResourcePath,

"DescriptionITrackSourceAwareEvent", typeof(ITrackSourceAwareEvent))]

 public interface ITrackSourceAwareEvent : IGeoSpatialAwareEvent

 {

 /// <summary>

 /// The identifier of the device which is generating the track

 /// </summary>

 [CategoryGeoSpatial]

 [DisplayName(DeviceConstants.ResourcePath,

"DisplayNameITrackSourceAwareEventTrackSourceDevice",

typeof(ITrackSourceAwareEvent))]

 [Description(DeviceConstants.ResourcePath,

"DescriptionITrackSourceAwareEventTrackSourceDevice",

typeof(ITrackSourceAwareEvent))]

 [DeviceIdentifier(typeof(IDevice))]

 Guid TrackSourceDevice { get; set; }

 /// <summary>

 /// The identifier of the track which created the event

 /// </summary>

 [CategoryGeoSpatial]

 [DisplayName(DeviceConstants.ResourcePath,

"DisplayNameITrackSourceAwareEventTrackId", typeof(ITrackSourceAwareEvent))]

 [Description(DeviceConstants.ResourcePath,

"DescriptionITrackSourceAwareEventTrackId", typeof(ITrackSourceAwareEvent))]

 string TrackId { get; set; }

 }

ISDK Event Interfaces
Connector device events may need to implement some standard interfaces. These
standard interfaces are defined in the assembly, CNL.IPSecurityCenter.Driver.

Implementing an Event Interface in Connector Designer
1. In Toolbox, select Event Interface shape and drag into the workspace.
2. Click the Event Interface shape, select the Interface Type from the list.
3. In Toolbox, click Event to Event Interface connector.
4. Using the connector, connect the desired event to Event Interface shape.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

180

The following sections list the current set of known Event interfaces and their expected
use.

Event Interface Description Properties Example

IAccessEvents
Deprecated - DO
NOT USE

IDoorEvents
Deprecated - DO
NOT USE

IPositionAwareEvent

Used when the
device reports
event with
Schematic position
available: X, Y, Z,
Heading, Speed,
and Positional
Reference
Identifier. Typically
, applicable for
radar-like systems
which detect
tractable targets.

Some of the properties
are optional allowing
nullable values as some
subsystems may not
provide all the
coordinates.
• double? X - optional

X coordinate, the
valid values are
between 0.0 and 1.0

• double? Y - optional
Y coordinate, the
valid values are
between 0.0 and 1.0

• double? Z - optional
Z coordinate,
denotes the floor
within a multi-floor
building. Z-value is
set on a Location, so
that trails with a
matching z-value are
plotted on that
location

• double? Heading -
optional direction
coordinate, angle
relative to the
vertical, not used in
Control Center yet.

• double? Speed -
value reported by
the 3rd party SDK, if
this is unknown,
Control Center

Raising driver event in a
driver.

OnTraceSchematicEvent(new

TraceSchematicEventArgs(t

his)

 {

 X = trace.PositionX,

 Y = trace.PositionY,

 PositionalReferenceIde

ntifier = 1,

 });

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

181

calculates the value
automatically based
on positions
reported previously

• int
PositionalReferenceI
dentifier - represents
the coordinate
system in use,
currently the only
valid value is 1

ITrackablePositionAwa

reEvent

An extended
version of

IPositionAwareE

vent

 Used when the
device reports
event with
Schematic position
available: X, Y, Z,
Heading, Speed,
Positional
Reference
Identifier, and
TrackId.

 Typically,
applicable for
radar-like systems
which detect
tractable targets.

Some of the properties
are optional and
consequently are
nullable values as some
subsystems may not
provide all the
coordinates.
• double? X - optional

X coordinate, the
valid values are
between 0.0 and 1.0

• double? Y - optional
Y coordinate, the
valid values are
between 0.0 and 1.0

• double? Z - optional
Z coordinate,
denotes the floor
within a multi-floor
building. Z-value is
set on a Location, so
that trails with a
matching z-value are
plotted on that
location

• double? Heading -
optional direction
coordinate, angle
relative to the
vertical, not used in
IPSC yet.

• double? Speed -

Raising driver event in a
driver.

OnTraceSchematicEvent(new

TraceSchematicEventArgs(t

his)

 {

 TrackId =

trace.Id.ToString(),

 X = trace.PositionX,

 Y = trace.PositionY,

 PositionalReferenceIde

ntifier = 1,

 });

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

182

value reported by
the 3rd party SDK, if
this is unknown,
IPSC will calculate
the value
automatically based
on positions
reported previously

• int
PositionalReferenceI
dentifier - represents
the coordinate
system in use,
currently the only
valid value is 1

• string TrackId -
unique target/track
identifier

IGeoSpatialAwareEvent

Used when the
device reports
event with
Geographic
position available:
Latitude,
Longitude,
Heading, Speed,
and SRID.

 Typically,
applicable for
radar-like systems
which detect
tractable targets.

Some of the properties
are optional and
consequently nullable
as some subsystems
may not provide all the
coordinates.
• double? Latitude -

optional
geographical
coordinate, the valid
values are between -
90.0 and 90.0

• double? Longitude -
optional
geographical
coordinate, the valid
values are between -
180.0 and 180.0

• double? Heading -
optional geographic
direction coordinate,
the angle from the
geographic North,
the valid values are
between 0.0 and

Raising driver event
AlertGeoSpatialAlarm in
Geospatial Alert driver.

OnAlertGeoSpatialAlarmEve

nt(new

AlertGeoSpatialAlarmEvent

Args(this,

e.DateTimeOfAlarm)

 {

 SourceSystem =

e.SourceSystem,

 SourceId =

e.SourceId,

 Latitude =

e.Latitude,

 Longitude =

e.Longitude,

 Description =

e.Description,

 Url = e.Url,

 TypeOfAlarm =

e.TypeOfAlarm,

 DeviceId =

e.DeviceId,

 SpatialReferenceId

entifier =

SpatialReferenceIdentifie

r

 }));

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

183

180.0, not used in
Control Center yet

• double? Speed -
value reported by
the 3rd party SDK, if
this is unknown,
Control Center
calculates the value
automatically based
on positions
reported previously

• int
SpatialReferenceIde
ntifier - use 4326 for
longitude/latitude
(based on World
Geodetic System
[WGS84]). A Spatial
Reference System
Identifier (SRID) is a
unique value used to
unambiguously
identify projected,
unprojected, and
local spatial
coordinate system
definitions.

ITrackableGeoSpatial

AwareEvent

An extended
version of

IGeoSpatialAwar

eEvent

 Used when the
device reports
event with
Geographic
position available:
Latitude,
Longitude,
Heading, Speed,
SRID, and TrackId.

• double? Latitude -
optional geographical
coordinate, the valid
values are between -
90.0 and 90.0

• double? Longitude -
optional geographical
coordinate, the valid
values are between -
180.0 and 180.0

• double? Heading -
optional geographic
direction coordinate,
the angle from the
geographic North,
the valid values are

OnTraceUpdatedEvent(new

TraceUpdatedEventArgs(thi

s)

 {

 TrackId =

trace.Id.ToString(),

 SpatialReferenceIdenti

fier = 4326,

 Latitude =

trace.PositionLatitude,

 Longitude =

trace.PositionLongitude,

 });

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

184

 Typically,
applicable for
radar-like systems
which detect
distinct target
movements, each
target is identified
by Track ID which
is displayed in
Control Center
maps as an object
with a trail path.

between 0.0 and
180.0, not used in
IPSC yet

• double? Speed - value
reported by the 3rd
party SDK, if this is
unknown, Control
Center calculates the
value automatically
based on positions
reported previously

• int
SpatialReferenceIden
tifier - use 4326
(based on World
Geodetic System
[WGS84]) for
longitude/latitude. A
Spatial Reference
System Identifier
(SRID) is a unique
value used to
unambiguously
identify projected,
unprojected, and
local spatial
coordinate system
definitions.

• string TrackId -
unique target/track
identifier

ITrackSourceAware

Event

An extended
version of
IGeoSpatialAwareE
vent

 Used when the
device reports
event with
Geographic
position and a
source device for
the track: Latitude,

• double? Latitude -
optional geographical
coordinate, the valid
values are between -
90.0 and 90.0

• double? Longitude -
optional geographical
coordinate, the valid
values are between -
180.0 and 180.0

• double? Heading -
optional geographic

OnEnteringEvent(new

EnteringEventArgs(this,

track.CurrentPosition.Eve

ntTime)

 {

 Trac

kId =

track.FriendlyTrackId,

 Long

itude =

track.CurrentPosition.Lon

gitude,

 Lati

tude =

track.CurrentPosition.Lat

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

185

Longitude,
Heading, Speed,
SRID, TrackId and
TrackSourceDevice

 Defines an event
which is raised in
relation to a track
on the map but is
raised by a
different device
than the track
source. This event
provides the Track
Source as well as
the Track Identifier
so the correct track
can be alerted. It is
expected that the
event populates
the geo-spatial
properties of the
event based on the
location of the
track causing the
event. An example
of this used would
be a geo-fence
raising an event
when a track has
approached/entere
d/exited it, and the
track may need to
be alerted along
with the geo-fence
itself. The track
identifier and the
identifier of the
radar generating
the track are
included in the
event so Control
Center can
correctly identify

direction coordinate,
the angle from the
geographic North,
the valid values are
between 0.0 and
180.0, not used in
IPSC yet

• double? Speed - value
reported by the 3rd
party SDK, if this is
unknown, IPSC will
calculate the value
automatically based
on positions reported
previously

• int
SpatialReferenceIden
tifier - use 4326
(based on World
Geodetic System
[WGS84]) for
longitude/latitude. A
Spatial Reference
System Identifier
(SRID) is a unique
value used to
unambiguously
identify projected,
unprojected, and
local spatial
coordinate system
definitions.

• string TrackId -
unique target/track
identifier

• Guid
TrackSourceDevice -
the device identifier
of the device raising
the track event to
which this event is
related (the radar-
like device)

itude,

 Head

ing =

track.CurrentPosition.Hea

ding,

 Spat

ialReferenceIdentifier =

4326,

 Spee

d =

track.CurrentPosition.Spe

ed,

 Trac

kSourceDevice =

track.ReportingSensor

 });

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

186

the associated
track.

ITimebarDisplayAlways

Event

When connector
event implements

ITimebarDisplay

AlwaysEvent

interface, this
event appears on
Timebar in
Playback mode.

ITimebarDisplay

OptionalEvent

When connector
event implements

ITimebarDisplay

OptionalEvent

interface, this
event appears on
Timebar in
Playback mode

Utility Libraries
The ISDK provides a set of standard utility libraries designed to implement a fixed,
tested, implementation of standard repetitive tasks.

The resource set lives

• DDL - CNL.IPSecurityCenter.Driver.Utility.

• root namespace - CNL.IPSecurityCenter.Driver

The sections below outline the signature of each of these utilities. During a code
review, use of these utilities should be checked for and the review failed if they are not
used in the appropriate locations.

Driver
OrderedThreadPool provides a background thread pool that processes work-units

(methods) in a fixed sequence.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

187

Driver.Editors
CollectionConverter<t>
 CollectionEditor Dialog<TItem,TCollection>
 CollectionEditor<TItem,TCollection,TValidator>
 CollectionListViewItem<T>
 DisplayIndexAttribute
 IListViewValidator<T>
 InvalidPropertyValueException
 Localization
 ShellFolders

Utility.Logging
Provides a wrapper around the Loupe Logging software that allows for dynamic, in
application modification of the logging levels provided.
 See Logging Utility below for more detail and how to apply the pattern.

Utility.Net

Utility Description

Address

Static generalized class to pull back the local domain name, device name
and address information.

NOTE: If IPv6 is active that address may be returned.

INetwork
Monitor

The expected set of functionalities required by network monitoring.

public interface INetworkMonitor : IDisposable

 {

 event EventHandler ConnectionFailed;

 string Address { get; set; }

 int Attempts { get; set; }

 TimeSpan Interval { get; set; }

 bool IsConnected();

 void Start();

 void Stop();

 }

Network
Monitor

An extended abstract class that provides the network monitoring
functionality and just requires the user to provide a method:

public abstract bool IsConnected();

which implements how the connection is tested and returns a boolean
value true when connected, otherwise false.

PingMonitor

Although provided within the utility set, Everbridge strongly
recommends that such functionality is not used to determine the
availability of a sub-system. Most security policies view ‘ping’ as a
security risk and disable it as a device detection method. As a

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

188

consequence, no description of its interface or workings are provided.
 If any form of ‘Ping’ monitoring is used in a driver, you MUST provide a
boolean property on the driver server to allow for the disablement of
that functionality.

Port

Provides a method to find the first available (unused) UPD port within a
range of port values, or throw an
InvalidOperationException exception if none available.

Var PortId = Port,FindRandomFreeUdpPort(int rangeStart, int

rangeEnd)

NOTE: OS security and network policies may block the returned port
rendering it unusable. If using this method, it MUST be stated in the
provided RDIN and checks on the security policy for the port range
must be made.

Utility.Net.Sockets
A set of utility functions to provide a uniform access method to TCP data streams.

Utility Description

DataReceivedChunk

ByteTerminator

Defines a default data packet terminator strategy based
defining a byte array that indicates the end of a data packet,
subsequent data is maintained in the buffer and future data
appended to the end of the buffer.

When initializing an instance of the class the following values
should be set:

public byte[] Terminator { get; set; }

 public int BufferSize { get; set; }

 Use the:

• Terminates property to define a byte sequence that
terminates a message packet

• BufferSize property to indicate a maximum size of byte
array to maintain (defaults to 1024 bytes)

DataReceivedEvent

Args

Event object raised when a terminated data packet has been
received

[Serializable]

 public sealed class DataReceivedEventArgs :

EventArgs

 {

 private byte[] m_data;

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

189

 private Encoding m_encoding;

 public DataReceivedEventArgs(byte[] data, string

source, Encoding encoding)

 {

 this.m_data = data;

 this.m_encoding = encoding;

 this.Source = source;

 }

 public byte[] GetData() => this.m_data;

 public string Source { get; private set; }

 public override string ToString() =>

this.m_encoding.GetString(this.GetData());

DataReceivedPass

Thru

An

IDataRecievedChunkStategy

derived class that as the name implies just returns each data
packet received without any processing.

DisconnectedEvent

Args

An event object raised when the system detects a
disconnection event from a data source, the event contains
any exception information that is associated with the
disconnection.

HandleClient

Connection

A fully defined server listening class for which the user needs to
provide, or register to the following:

public HandleClientConnection(Encoding encoding)

 public event EventHandler<DataReceivedEventArgs>

DataReceived;

 public bool KeepLooping { get; set; }

IDataReceived

ChunkStrategy

Defines the interface for providing a incoming data packet
received strategy that can be applied to an incoming data
stream, before message packet events are raised.

public HandleClientConnection(Encoding encoding)

 public event EventHandler<DataReceivedEventArgs>

DataReceived;

 public bool KeepLooping { get; set; }

ITcpClientWrapper

Definition of the minimum functionality required for a TCP
client connection implementation.

public interface ITcpClientWrapper : IDisposable

 {

 event EventHandler<EventArgs> Connected;

 event EventHandler<DisconnectedEventArgs>

Disconnected;

 event EventHandler<DataReceivedEventArgs>

DataReceived;

 string HostAddress { get; }

 int Port { get; }

 Encoding Encoding { get; }

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

190

 bool IsConnected { get; }

 void Send(string data);

 void Send(byte[] data);

 void Connect(string hostAddress, int port);

 void Connect(string hostAddress, int port,

Encoding encoding);

 IDataReceivedChunkStrategy

DataReceivedChunkStrategy { get; set; }

 void Disconnect();

 }

ITcpServer

Define the standard set of methods and events that should be
implemented for a TCP server object.

public interface ITcpServer

 {

 event EventHandler<DataReceivedEventArgs>

DataReceived;

 void Start(int port, Encoding encoding);

 void Stop();

 void SendMessage(byte[] message);

 IDataReceivedChunkStrategy

DataReceivedChunkStrategy { get; set; }

 event EventHandler Connected;

 event EventHandler Disconnected;

 event Action<string> ConnectionFailure;

 }

TcpClientWrapper

An implementation of the Utility defined interface, if no

IDataReceivedChunkStrategy

is defined it uses the utility defined default of pass through.
Otherwise, the user needs to define the
Address/Port/Encoding for the connection and listen to the
appropriate events.

TcpServer

Implementation of multi-port listening server. Allows the user
to register the following events and process messages as
appropriate. If no IDataReceivedChunkStrategy is

defined it uses the utility defined default of pass through.

public event EventHandler Connected;

 public event EventHandler Disconnected;

 public event Action<string> ConnectionFailure;

 public event EventHandler<DataReceivedEventArgs>

DataReceived;

 public IDataReceivedChunkStrategy

DataReceivedChunkStrategy { get; set; }

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

191

Utility.OperationScheduler
When an integration has a set of operations or states it runs through this utility provides a
scheduling capability to create the list of operations, and run through them monitoring
their state until completion.

Utility Description

Operation

The base class of an operation for the scheduler to execute.
 The user should override the following two methods to provide the
functionality to execute:

public abstract Operation Clone();

 public abstract void Execute();

and set the following values, either during object initialisation or by
direct manipulation of the properties

protected Operation(string id, int timeout)

 protected Operation(string id, int timeout, Scenario

parentScenario)

 public int Timeout { get; set; }

 public string Id { get; set; }

 public bool Success { get; set; }

 public Scenario ParentScenario { get; set; }

Operator

Scheduler

The actual class/object that works through each of the provided
operational scenarios to exercise the required functionality.

Scenario

A wrapper class to hold the set of operations and their sequence for
implementation.

ScenarioEventArgs

Event raised when a scenario operation, or complete scenario has
completed.

public class ScenarioEventArgs : EventArgs

 {

 public string ScenarioId { get; private set; }

 public bool CompletedSuccessfully { get; private set; }

 public ScenarioEventArgs(string scenarioId, bool

completedSuccessfully)

 {

 this.ScenarioId = scenarioId;

 this.CompletedSuccessfully = completedSuccessfully;

 }

 }

ScenarioStatus

An enumerate returned by the operation Scheduler to indicate current
status, the enumerate values are descriptive of their meaning and are
not covered separately.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

192

public enum ScenarioStatus

 {

 OperationCompleted,

 AbortScenario,

 ScenarioCompleted,

 ScenarioFailed,

 ScenarioTimeout,

 Error,

 }

 Utility.Patterns

BitArithmeticHelper

A group of operations to allow for the manipulation of byte data.

public static class BitArithmeticHelper

 {

 public static void SetNthBit(byte[] array, int bitNo)

 public static void ResetNthBit(byte[] array, int bitNo)

 public static bool CheckNthBit(byte[] array, int bitNo)

 public static bool CheckNthBit(byte b, int bitNo)

 public static string ByteArrayToString(byte[] array)

 public static byte[] CopyArray(byte[] source, int startIndex, int

length)

 public static string GetBitmapLogString(byte[] bitmap)

 public static byte[] MergeArrays(byte[] array1, byte[] array2)

 public static short ShortFromTwoBytes(byte msb, byte lsb) =>

BitConverter.ToInt16(new byte[2]

 }

GenericPool<T>

Depricated – .Net now provides equivalent functionality in the collections library.

Utility.Threading
Everbridge provides a standard timer class and pattern that should be followed. This deals
with issues seen when terminating timer operations.

SafeTimer - Class
namespace CNL.IPSecurityCenter.Driver.Utility.Threading

 {

 public class SafeTimer : IDisposable

 {

 public event EventHandler Elapsed;

 public event EventHandler<SafeTimerExceptionEventArgs>

ExceptionOccurred;

 public SafeTimer(bool repeat, int interval, string name){…}

 public string Name { get; private set; }

 public int IntervalMilliseconds { get; set; }

 public bool Repeat{ get… set… }

 public bool Enabled {get…, set … }

 }

 }

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

193

SafeTimerExceptionArgs

An exception class used in an event returned from the timer object that the user can
examine if the timer object encounters an unexpected issue.

Video

Some video connectors do not provide the capability to capture video stream frames and
save them as a still image on the system.
 Everbridge provides a method that allows the user to capture a screen scrape from the
VMC display and save that. However, Everbridge recommends that, wherever possible,
the third-party supplied methods should be used in preference to this technique.

ImageCapture

This static class provides two methods that return a bitmap image object, based on the
region requested, either through a windows Rectangle object or providing the initial x, y
position and the width and height of the area to capture. Both methods require the
Windows ‘Handle’ to the display area.

namespace CNL.IPSecurityCenter.Driver.Video

 {

 public static class ImageCapture

 {

 public static Image Capture(IntPtr handle, Rectangle region)

 public static Image Capture(IntPtr handle, int x, int y, int width, int

height)

 }

 }

Logging Utility
When developing and first deploying a device connector a significant amount of logging
information is required to help characterize behavior and identify issues, and
subsequently to deployment. If issues are reported this logging helps Everbridge identify
the issue. Control Center uses Log4Net to provide that capability.

However, this level of logging information can often overwhelm the logging system and
significantly slow the connector when the system is finally deployed.

Log4Net does provide a capability to change the logged information, but this change
effects the whole of the Connection Manager Service and requires a configuration file
change and restart of the Manager service.

This wrapper and the use of a configuration property on the connector allows for the
dynamic control of the logging level on a ‘per-device’ basis without restart, does not affect
other connectors attached to the Manager, nor does it require a restart of the Service.
This will allow for PSG/Support to set an increased logging level when initially deploying
or when an issue occurs, without changes to the connector code or Service configuration.

The usage of this wrapper is similar to how log4net is currently used, but also provides
additional features for use during initial development.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

194

LogLevel
LogLevel is an enum containing 5 levels of logging.

Logging
Level

Description

Verbose
not used inside the logger, however, you can use this if you want to expose
the data you are sending/receiving inside your communication level. You
will have to implement separate checks for this.

Debug Outputs logs of Debug, Info, Warn, Error and Fatal types

Info Info will show logs of Info, Warn, Error and Fatal types.

Warn Warn will show logs of Warn, Error, and Fatal types

Error Error will show logs of Error and Fatal types

NOTE: Note: Fatal is not part of this enum, as connectors should not exhibit fatal faults –

one that would crash the connection manager. Any fault that could be logged as fatal
needs to be completely eradicated from the connector code before being released.

LogManagerStore
LogManagerStore is a static class that provides instances of DriverLogManager. It has

the following methods.

Signature Description

DriverLogManager

GetLogManager(Guid

deviceId)

Retrieves a DriverLogManager instance. The

same instance should be used throughout the entire
driver. It is recommended to use the server device id
for deviceId, and pass the server id to any child
device, so that it can retrieve the same instance of
DriverLogManager.

DriverLogManager
DriverLogManager is a class that is used by client applications to request logger

instances. It has the following methods.

Signature Description

DriverLog
GetLogger(type)

Retrieves a logger of the desired type. Returns a Log object that
can be used in the same way as ILog of log4net.

LoadLog4NetCon
fig(filePath)

Loads a log4net configuration file to be used while developing the
low-level code. Any calls to this method MUST be removed before
loading the connector to Control Center, otherwise the driver will
not work. This can be used to create local log files while developing,
to have full trail of actions performed by the application.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

195

It has the following properties.

Name Type Description

LogLevel LogLevel
Set this property to the desired logging level for all loggers
managed by this DriverLogManager.

DriverLog
Log class implements a log4net interface ILog. It has the same methods, so it can be used
as a standard ILog implementation, however it has additional features beyond those of
ILog. It has the following properties.

Name Type Description

LogLevel LogLevel

Set this property to the desired logging level for this logger.
Note: It is not recommended to change this property on the
logger. Instead, set it on DriverLogManager from which the
logger instance was retrieved.

Bool
OutputToC
onsole

Set this property to true if you want to output your logs to
console. This is useful if you are starting to develop the low-
level code of the driver and not using it in IPSC yet. This will
essentially perform Console.WriteLine() but using the
methods of ILog interface. After you are done with
developing the low-level code, just set this property to false
and your logs will be ready to use with the driver.

For other properties and methods please have a look at log4net ILog interface.

Example
CAUTION: For this to work properly, the same instance of DriverLogManager must

be used across the entire connector. To achieve this, it is suggested to use the Identifier
property of the Server device, pass that property to any child device (in a custom
constructor) and use it with LogManagerStore.GetLogManager(Guid deviceId)

to get a DriverLogManager instance.

Setting the Logging Level

Create a property on the server with name LogLevel of type

CNL.IPSecurityCenter.Driver.Utility.Logging.LogLevel In the server

class, overwrite the original get and set methods of this property as such

NOTE: A private variable is needed. This variable is serialized. Suggested name:
_logLevel):

private LogLevel _loggingLevel;

 public new LogLevel LoggingLevel

 {

 get { return _loggingLevel; }

 set

 {

 if (_loggingLevel != value)

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

196

 {

 _loggingLevel = value;

 LogManagerStore.GetLogManager(Identifier).LogLevel = value;

 }

 }

 }

This updates the logging level for the specific DriverLogManager instance, which in

turn updates the level for each logger that belongs to this manager.

Getting a Logger

To get a logger first define a private DriverLog variable. Then, inside the device’s

InitializeFields() method assign it (_log) as such:

Server Device

private void InitializeFields()

 {

 _lockInstance = new object();

 _log =

LogManagerStore.GetLogManager(Identifier).GetLogger(typeof(BriefCamServer));

 LogManagerStore.GetLogManager(Identifier).LogLevel = LoggingLevel;

 }

NOTE: Do not forget to set the logging level on the LogManager, otherwise logging level
will reset to debug upon every Control Center restart. Only needed on the server device.

All Other Devices

private void InitializeFields()

 {

 if (_serverGuid == default(Guid))

 {

 _serverGuid = new Guid();

 }

 _log =

LogManagerStore.GetLogManager(_serverGuid).GetLogger(typeof(BriefCamCamera));

 }

NOTE: InitializeFields() should be called inside the constructor and inside
OnDeserialization()

Using the Logger

To log things, use this as a log4net ILog object:

• _log.Debug(message);
• _log.Debug(message, exception);
• _log.DebugFormat(formatString, args);

Other methods from ILog such as Info, Warn, Error remain available.

NOTE: Since the Log4Net configuration tool is only a wrapper around log4net, using the
methods of log4net for actual logging, if the configuration file for log4net is edited to
change the internal logging level, this utility also conforms to those settings. For example,
if log4net is set to only display Error level logs, even if the utility is set to Debug level, only

Error level messages are logged.

CONTROL CENTER INTEGRATION SOFTWARE DEVELOPMENT GUIDE

197

Example Log4Net Configuration File

This file can be used with LoadLog4NetConfig() method in DriverLogManager.

 <?xml version="1.0" encoding="utf-8" ?>

 <configuration>

 <configSections>

 <section name="log4net"

type="log4net.Config.Log4NetConfigurationSectionHandler, log4net" />

 </configSections>

 <log4net>

 <appender name="LogFileAppender"

type="log4net.Appender.RollingFileAppender">

 <param name="File" value="Logger1.log"/>

 <lockingModel type="log4net.Appender.FileAppender+MinimalLock" />

 <appendToFile value="true" />

 <rollingStyle value="Size" />

 <maxSizeRollBackups value="2" />

 <maximumFileSize value="10MB" />

 <staticLogFileName value="false" />

 <layout type="log4net.Layout.PatternLayout">

 <param name="ConVersionPattern" value="%d [%t] %-5p %c %m%n"/>

 </layout>

 </appender>

 <root>

 <level value="ALL" />

 <appender-ref ref="LogFileAppender" />

 </root>

 </log4net>

 <startup>

 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5" />

 </startup>

 </configuration>

	Control Center Integrations Software Development Kit (IDSK)
	Product Naming Changes

	Setting Up Control Center ISDK Environment
	Setting up Resharper and StyleCop in Visual Studio
	Installing Control Center ISDK
	Installing Connectors in Control Center

	Control Center Connector Architecture
	Control Center Connector Structure
	Connectable Devices
	Non-Connectable Devices

	State Propagation Logic
	Standard Control Center Device States

	Video Connector Architecture
	Interactions with Microsoft Eco-system

	Using NVR Connector Template
	NVR Template Connector Terminology
	NVR Connector Template Feature List
	CCTV Device States
	Connecting NVR Connector Template to Server
	Using Alarms with NVR Connector Template.
	Use Case Scenarios

	State Machine (FSM)
	FSM in Camera Video Control Class Use Cases

	Implementing Live Video
	Using Playback
	Understanding Playback Speeds
	About CameraVideoControl.cs
	Playback Scenarios
	Understanding Seek Results Cache

	Special Cases
	Limitations

	Using Access Control Connector Template
	Access Control Template Connector Terminology
	Access Control Device States
	Device States
	Area States
	Door States
	Input States
	Output States
	Server Device Methods

	Events
	Alarm
	Fault
	Tamper

	Access Control System Connector Functionality
	Management Server
	Properties
	Methods
	Events
	Interfaces

	Access Point
	Properties
	Methods
	Events
	Interfaces
	Custom States

	Output
	Properties
	Methods
	Events
	Custom States

	Input
	Properties
	Methods
	Events
	Custom States

	Area
	Properties
	Methods
	Events
	Custom States

	Panel
	Properties
	Methods
	Events
	Reader
	Properties
	Events

	Using Fire Panel Connector Template
	Fire Panel Template Connector Structure
	Contracts
	Events
	Interfaces
	Incoming Data Model
	Panel
	Zone
	Switch
	Device

	Connector Project Structure
	Connector Name
	Connector Project Files

	Using Connector Design Surface
	Connections
	Shapes and Shape Properties
	Documentation Shape
	Documentation Shape Properties

	Video Control Shape
	Video Control Shape Properties
	Properties that only affect documentation
	Properties that affect code and documentation

	Contract Shape
	Contract Shape Properties

	Contract Property
	Method Shape
	Method Shape Properties
	Event Shape
	Event Shape Properties
	Event Property Properties

	Custom State Shape
	Custom State Shape Properties
	Built-in Interface Shape

	Built-in Interface Shape Properties
	Event Interface Shape
	Event Interface Shape Properties

	Custom ISDK Attributes
	Property Value Validation
	Contract Custom Attributes
	Other Attributes

	Toolbox
	Right Click Menu
	Update Documentation
	Documentation Generation Failures

	Device Contract
	Device Contract Class Format
	Constructor
	Private Fields

	Drivers Public Methods
	Connectable Device Contract Class Implementation
	Non-Connectable Device Contract Class implementation

	Populating Child Devices
	Populating Single Child Device
	Populating Multiple Child Devices
	Populating Large Number of Devices
	Populating Devices as a Background Task
	Populate Child Devices With a Task Cancellation

	Repopulating a Deleted Device

	Navigating Device Hierarchy
	Get Child device
	Get Parent Device
	Get Device Custom Identifier (String) from Device GUID
	Get Device from Device GUID

	Device Interfaces
	Device Connection
	Connectivity Monitoring

	Reflecting Current Device State
	Reporting Child Device States

	Custom States
	Custom State Race Condition

	Device Properties
	Supported Property Types
	Default Property Values
	Add a New Property
	Make a Property Read Only
	Saving and Persisting a Property
	Validating Property Values
	Detecting Property Value Changes

	Device Public Methods
	Device Method Name Limitations
	Device Methods Parameter Types
	Device Method Return Types
	Hide a Method From a Property Grid
	Provide a List of Items
	Operator Actions

	Connector Event Properties
	Raising Connector Events

	Reporting Geographic Location
	Exposing ENUMs
	Developing Video Connectors
	Populating Buttons and Controls
	VideoControlHost.cs
	Video Operator Action buttons
	VCM Configuration

	Video Tile Control
	Basic Features of a CCTV Connector
	Server-side
	‎Client-side

	SDK Session Implementation

	Connector Patterns
	Safe Timer
	Assembly Redirection
	Generic Pool
	Generic Poller
	Playback FSM
	Connection Monitors
	Network Socket Wrappers
	Float Comparison
	Split Camel Case
	Device Population
	Device Patters Example Code

	Connector Testing
	Connector Testing Prerequisites
	Connections and Online States
	Windows Credentials/Single Sign On
	Lifetime Manager

	Device Population
	‎ Typical Scenarios for Device Population
	Re-adding Child Devices Manually After Deletion

	Device Properties
	Device Methods
	Invoke Device Methods

	Device Events
	Creating a VRP Triggered on Device Event
	Event Properties
	Simulating Events

	Device Custom States
	Typical Usage of Custom States

	Live Video
	Presets
	Playback
	Playback Loop
	Timebar Events
	Summary of VRPs for Testing Playback
	Video Operator Actions
	Digital Zoom
	Video Export

	Test SDK Sessions/Connections Release
	Memory Leaks Detection
	Uninstall Connectors
	All Connectors - Expected Functionality
	Video Connectors - Expected Functionality

	Example FSM Implementation
	Control Center ISDK Compatibility
	ISDK Versions
	ISDK 3.0
	ISDK 3.1
	IVideoControlWithDynamicOperatorActions
	IDeviceOverridesLabel
	DeviceOverridesChildOnlineState (Attribute)

	ISDK 3.2
	SupportedPreviousDriverAttribute
	ISupportsPausingActivity
	Motion JPEG support
	ThrottledEventManager

	ISDK 3.3
	ITimebarDisplayAlwaysEvent
	ITimebarDisplayOptionalEvent

	ISDK 3.4
	IPositionAware
	IPositionAwareEvent
	IPositionAwareTracking
	ITrackablePositionAwareEvent
	PositionChangedEventArgs

	ISDK 3.5
	x64BitCompatibilityAttribute
	IVideoControlLifetimeManager (aka Lifetime Manager)
	ISwitchCamera

	ISDK 3.6
	DeviceCategoryType
	BitArithmeticHelper
	Operation Scheduler

	ISDK 3.7
	DeviceInterfaceType Additions
	IOrientationAware & IGeoSpatialOrientationAware Interfaces
	IOrientationAware
	IGeoSpatialOrientationAware

	Geo Spatial Extensions
	IGeoSpatialAwareWithAlt
	IGeoSpatialAwareWithAltEvent
	IRelativeGeoSpatialAwareEvent

	ISlewToCue Interface
	IRadar and IGeofence Interfaces

	ISDK 3.8
	ISDK 3.9
	x64BitCompatibilityAttribute Attribute
	x86CompatibilityAttribute Attribute

	ISDK 3.10
	Logging Utility
	Packaging Connector A With Dependencies Having White Spaces
	Common Fire Panel Additions
	Enumerations
	Event Properties

	ISDK 3.11
	ISDK 3.12

	ISDK Event Interfaces
	Implementing an Event Interface in Connector Designer

	Utility Libraries
	Driver
	Driver.Editors
	Utility.Logging
	Utility.Net
	Utility.Net.Sockets
	Utility.OperationScheduler
	Utility.Patterns
	BitArithmeticHelper
	GenericPool<T>

	Utility.Threading
	SafeTimer - Class
	SafeTimerExceptionArgs
	Video
	ImageCapture

	Logging Utility
	LogLevel
	LogManagerStore
	DriverLogManager
	DriverLog
	Example
	Setting the Logging Level
	Getting a Logger
	Server Device
	All Other Devices

	Using the Logger
	Example Log4Net Configuration File

