

Control Center Addon Framework Guide

Everbridge Suite

CONTROL CENTER ADDON FRAMEWORK GUIDE

2

Contents
About Control Center Addons .. 3

Control Center Addon Package ... 4

Control Center Addon Manifest ... 4

Installing Addons ... 5

Updating Addons ... 5

Control Center Addon Framework Assemblies and Interfaces ... 6

Accessing Addon Framework Interfaces ... 9

Versioning .. 10

Control Center Addon Component Types .. 10

Control Center Objects ... 10

Control Center Property Extenders ... 12

Control Center Addon User Interface ... 13

Control Center Client Action .. 13

Control Center Client Managers ... 14

Control Center Data Source .. 14

Control Center Data Source Designers .. 15

Control Center GUI Plugin ... 15

Control Center Registration Manager .. 17

Control Center User Interface Designer .. 17

Control Center Video Extensions .. 18

CONTROL CENTER ADDON FRAMEWORK GUIDE

3

About Control Center Addons
Using Control Center Addon Framework, you can develop your own addons to expand
existing Control Center functionality.

The framework is divided into two distinct feature sets. The first allows you to register
new components within Control Center and is the top-level integration provided to
Addons. The second is a runtime interface framework that exposes Control Center
functionality to loaded Addon components within the Windows Client environment.

An Addon package can define the following components.

Component Description

Addon Object
Define new custom Control Center object types, for example, Type
Permissions object.

Addon Property
Extender

Add properties to existing Control Center objects, for example,
Windows Client object's Dashboard property.

Addon User
Interface

A control to display when and addon object is displayed in a tile
layout, for example, display a Dashboard object.

Client Action
Add executable actions on the Windows Client, that can be used
from commissioned buttons on the Main Menu graphical user
interface (GUI) control, for example, Client Template Picker.

Client Managers
This is an addon instance that runs for the lifetime of the client
process, for example, Theme Client Manager for managing theming
set by the Windows Client Theme object.

Data Source
Add dashboard data sources to provide data in the Dashboard
object, for example, RSS Feed Data Source.

Data Source
Designer

A designer for a data source to set parameters controlling the data
returned, for example, RSS Feed Designer.

GUI Plugin
Create custom Graphical User Interface controls to be used in the
Control Center GUI designer from the plugin controls toolbox
section, for example, Chrome Browser control.

Registration
Manager

An addon instance that runs once after a user has successfully
logged in and the client has loaded for the first time. The
Registration Manager is for registering and configuring the client
environment as a one-time event, for example, Icon Set and Tooltip
Registration Managers.

User Interface
Designer

A control to display when an addon object is double clicked in
System Configuration. The control is used to set the contents of the
object by its serializable settings. The control can be an editor
version of an Addon User Interface, for example, Dashboard
object designer, or a standalone control to set object contents, for
example, Type Permissions object.

CONTROL CENTER ADDON FRAMEWORK GUIDE

4

Video Extension
Add video functionality mostly through the timebar, for example,
Video Bookmarks and Video Loop Extensions.

Control Center Addon Package
A Control Center addon package is a folder that contains the resources and a manifest
file, that describe their capabilities, including one or more libraries/resources which
define the addons in that folder.

CAUTION: You must ensure that all addon packages have a unique folder name to make
sure addons do not override each other when installing.

A typical addon comprises:

• A manifest file called AddonManifest.xml which provides the XML that defines

the addon. This points at a DLL in the same folder in which to find the addons,
identifies the class for each addon, and provides additional information such as
addon object Display Name and Icon.

• The DLL file where the addons are defined.
• Image files for addon object icons referenced in the manifest file.
• Additional DLL files or other references the addon DLL requires. This could include

web components or third-party libraries but does not include the addon
framework libraries required to develop the addon as these are loaded by the
application. You must not include any associated driver DLL as these are
already referenced from the installed driver packages.

Control Center Addon Manifest
An Addon Package is a folder containing a file called AddonManifest.xml. The folder

may be anywhere under the AddonPackages folder, except inside another package.

The basic manifest XML structure:
<Manifest Name='ExamplePackage'>

 <Dependencies>.</Dependencies>

 <Assembly Path='ExampleAssembly.dll'>

 <Type Name='ExampleAssembly.ExampleObjectClass'>

 <Property Name='IPSC.AddonIpscObject'/>

 <Property Name='IPSC.Icon' Value='example.png'/>

 <Property Name='IPSC.DisplayName' Value='Example Addon'/>

 </Type>

 </Assembly>

 </Manifest>

The root element is Manifest, which can contain Assembly elements, which can contain
Type elements, which can contain Property elements. The Dependencies element is
optional and specifies a path to search for referenced assemblies.

Property names have significance as they are used by Control Center to find addons of
certain kinds, for example, IPSC.AddonIpscObject identifies Addon Control Center

Objects.

CONTROL CENTER ADDON FRAMEWORK GUIDE

5

NOTE: The property that has the name identifying the type of addon (for example,
IPSC.AddonIpscObject) often does not have a value; its purpose is simply to indicate

the Addon type. However, some addon types support another type (for
example, IPSC.Designer as the User Interface Designer is the designer for a specific

Addon Object). In this case, Value is the supported type.

Installing Addons
Addons must be installed manually on every client and server instance. On standard
installations, a default AddonPackages folder is created in C:\Program Files

(x86)\Everbridge\Control Center\AddonPackages. Where a custom install

path has been specified, the path is <custom install

path>\Everbridge\Control Center\AddonPackages. The addon package folder

must be deployed to this location and is loaded by Control Center on startup. This
requires restarting any active server or client.

Each client and server can be installed with only the local instance stopped. However, you
must not configure or start using an addon until an entire site is installed.

Updating Addons
Updating addons requires replacing the contents of the installed addon package within
the AddonPackages folder. You must do this on every client and server instance. To
upgrade an addon, you must stop the local Control Center instance (client or server) to
update/replace the folder contents. There are some key considerations when developing
updates to addon packages.

• The addon package must have the same folder name when deployed. If you need to
rename the folder, on upgrade, you must remove the previous folder.

• Ensure the referenced DLL has a File Version and that the File Version is
incremented for each new version.

• Consider backwards compatibility. Some components will already exist and be
commissioned. Ensuring existing configuration is compatible with the updated
package is very important. Breaking changes can include (but is not limited to):

o Adding new non-nullable properties to addon objects.
o Removing GUI plugin control events, event variables, or properties.
o Renaming registered components or their namespace.

• Unless all instances are stopped and updated at once, consider that some Control
Center instances may not be updated when updated components are loaded.

• In federated environments, you may need to ensure that updated definitions for
addon objects and plugin controls are compatible with the versions of the addon
packages that may be installed at remote sites.

CONTROL CENTER ADDON FRAMEWORK GUIDE

6

• For addons that include GUI Plugin Controls, when a GUI Plugin is a Control
Center GUI, Control Center Windows Client generates a Control Center GUI file
for the associated GUI. This caches the GUI plugin implementation at the time of
the file creation and may need to be recreated on all upgraded clients after
updating. The Control Center GUI file is in the folder
C:\ProgramData\Everbridge\Control Center\Windows

Client\Compiled\Plugin Controls

If the GUI designer using the GUI Plugin stopped working after an update, delete the
Control Center GUI file and restart Control Center. Although, this should happen
automatically on first login after updating, if the DLL file version was incremented as
recommended.

Control Center Addon Framework
Assemblies and Interfaces
The Control Center assemblies can be referenced in an addon to access the features
exposed through the Addon Framework. There are three major assemblies:

• CNL.IPSecurityCenter.CoreAddonContracts declares the attributes, interfaces
and related types for Control Center specific addons, providing hooks into various
Control Center functionalities.

• CNL.IPSecurityCenter.GraphicalUserInterface.Plugin.Interface declares the
attributes and related types required for GUI plugin controls.

• CNL.IPSecurityCenter.AddonFramework.Common.UI provides use of Telerik
theming (specifically, the Telerik Visual Studio 2013 theme used across the front-
end UI) through a XamlResourceHelper to merge the Telerik theme into the
resources of any WPF controls.

Typically, an assembly that defines an addon only needs to reference
CNL.IPSecurityCenter.CoreAddonContracts. It does not to reference Control Center
core. Unless it is defining a GUI plugin it does not need the
GraphicalUserInterface.Plugin.Interface.

The Addon Framework Environment Interfaces are defined in the
CNL.IPSecurityCenter.CoreAddonContracts and provide access to certain functionality.

The following primary interfaces are provided for Control Center client:

Interface Description

ICommonEnvironment
This interface provides basic access to the Control Center
runtime environment, and allows object resolution,
metadata fetching and getting other interfaces.

IUserInterfaceEnvironment
This interface is injected into a client-side addon at
runtime (derives from ICommonEnvironment) and
provides additional access to UI features.

IDesignerEnvironment
This interface is injected into the designer for a client-side
addon object (derives from

CONTROL CENTER ADDON FRAMEWORK GUIDE

7

IUserInterfaceEnvironment) and provides additional
access to UI features including drag-drop.

IVideoExtensionEnvironment

This interface is injected into the BeginSession method of
a Video Extension addon at runtime (derived from
IUserInterfaceEnvironment) and additionally allows
toolbar button interactions and overlaying a UI control
over the video. This interface also derives from
IVideoControl and so it represents the video player
instance, allowing interaction with the video control.

The following secondary interfaces can be cast from IUserInterfaceEnvironment. These
interfaces are injected into client-side addons at runtime.

Interface Description

IAlarmTypesEnvironment
Provides minimal alarm information –
alarm count for a given location.

IUserInterfaceEnvironmentControls
Serves as a factory for creating video or
scene controls.

IUserInterfaceEnvironmentVideoExport
Provides access to submit a Video Export
job or show the Video Export Wizard.

IUserInterfaceEnvironmentDragDrop

Provides a way to interpret drag and
drop events of Control Center objects
from inside Control Center, for Windows
Forms and WPF drag/drop events.

IUserInterfaceEnvironmentAlarms
Provides more detailed access to the
alarm stack visible to the user.

IUserInterfaceEnvironmentTracks
Provides access to a listener for user-
associated changes to tracks.

IUserInterfaceEnvironmentIcons
Provides a way to obtain the binary data
for an icon in Control Center from the
currently configured icon set.

IUserInterfaceEnvironmentIdentity
Provides access to the identity of the
currently logged on user and tenant ID of
the local site.

IUserInterfaceEnvironmentDragDropSource
Allows a UI to initiate a drag and drop
operation of multiple Control Center
objects from Windows Forms or WPF.

IUserInterfaceConfigurationReference
Provides the ID and type of the object
being displayed in the current context.

IUserInterfaceEnvironmentEvents Allows creation of an event listener.

IUserInterfaceEnvironmentDisplayWindows
Provides access to display window
settings of client.

IUserInterfaceEnvironmentEnterpriseSettings
Provides an entry point to get and set
enterprise settings.

CONTROL CENTER ADDON FRAMEWORK GUIDE

8

IUserInterfaceEnvironmentClientTileSource
Provides an entry point to get and set the
selected objects in the product.

IContrainerRegistar

Allows registration of interfaces in Unity,
as well as registering event control
providers that allow custom rendering of
an event’s properties in an additional tab
in the Event Viewer.

IDataSourceClient
Provides access to groups of
DataSources from remote clients.

IUserInterfaceTileLayouts
Allows managing the displaying of Tile
Layouts on the client.

IUserInterfaceEnvironmentSearchTypeDialog
Provides access to show the Types
selection dialog, and get device and
object information.

IUserInterfaceDropZone
Used to map commands executed against
Drop Zone

IUserInterfaceEnvironmentToastAlerts
Provides the ability to display a Toast
Alert in the client.

The following secondary interfaces can be cast from the ICommonEnvironment.

Interface Description

ICommonEnvironmentExtendedProperties
Provides access to the list of installed
Extended Property definitions for a
particular type.

ISearchEnvironment

Provides the ability to search for configured
objects in Control Center, in code, via the
popup Search dialog, or using the Inline
Search User Control.

ICommonEnvironmentDevices
Provides access to a remote proxy of a device
via the device contract interface.

ICommonEnvironmentCustomStorage
Provides access to the custom storage
capability in Control Center.

ICommonEnvironmentLocation
Provides the ability to get the parent
locations of a Control Center object.

ICommonEnvironmentServiceState
Provides the ability to get the connection
status of a site, and the status of a Control
Center object.

ICommonEnvironmentVideoBookmarks
Provides access to the database of video
bookmarks maintained inside Control
Center.

ICommonEnvironmentLicensing
Provides access to the effective combined
licensed capabilities for the installation.

ICommonEnvironmentNotifications Provides events about changes being made

CONTROL CENTER ADDON FRAMEWORK GUIDE

9

to Control Center object configuration.

ICommonEnvironmentEvents
Provides the ability to query time-bar
bookmark events on a device over a
timeframe.

ICommonEnvironmentDataAccessLayer
Provides the ability to read and update addon
objects and save custom property changes.

ISecurityEnvironment
Provides the capability to query security
related functionality.

IDataAcessEnvironment
Provides the ability to get the folder IDs of
built-in folders.

ICommonEnvironmentVariables
Provides the ability to replace the
Environment Variables found in a path with
their configured values in Control Center.

Accessing Addon Framework Interfaces
You must use the GetEnvironmentInterface method exposed on

ICommonEnvironment to access the secondary Addon Framework interfaces.

var alarmTypeEnv =

userInterfaceEnvironment.GetEnvironmentInterface<IAlarmTypesEnvi

ronment>();

However, some interfaces are not accessible through the GetEnvironmentInterface

method, in which case they can be obtained by casting the environment object to its
secondary Addon Framework interface.

var alarmTypeEnvironment = userInterfaceEnvironment as

IAlarmTypesEnvironment;

CONTROL CENTER ADDON FRAMEWORK GUIDE

10

Versioning
To ensure that old plugins continue to be compatible with new releases of Control Center,
the interfaces in CoreAddonContracts are permanently frozen once they appear in a
public release of Control Center. New functionality is only ever added by defining
separate new interfaces.

For convenience, some extension methods are provided so you do not have to perform
casts and so on.

Control Center Addon Component Types
Control Center Objects
You can define new custom Control Center object types. Custom Control Center object
types:

• Can hold serialized settings.
• (optionally) be edited in a designer (see Control Center User Interface Designer).
• (optionally) be displayable in Tile Layouts (see Control Center Addon User

Interface). Control Center objects handle specific areas of configuration. For
example, device, GUI, response plan, trigger, scene and so on.

As standard, a Control Center object:

• has a label, description, any other properties per object type (appear in property
grid).

• can be exported/imported as a kind-of XML.
• can be searched for - see Using the Search service.
• has the ability to be published and federated, if specified.
• has tracked dependencies on other Control Center objects (used by export and

publishing).
• has access to control list.
• can be enabled/disabled
• can be put into an Alert State.

CONTROL CENTER ADDON FRAMEWORK GUIDE

11

Defining a Control Center Addon Object

Manifest Properties

In the Addon Manifest, these properties can be defined:

• IPSC.AddonIpscObject - value is ignored, simply indicates addon type.

• IPSC.Icon - value is the path (relative to the package folder) to a 16x16 image

used in the UI.
• IPSC.DisplayName - value is the name to display for the type (currently not

currently support localization).

For example:

<Type Name='ExampleAssembly.ExampleObjectClass'>

 <Property Name='IPSC.AddonIpscObject'/>

 <Property Name='IPSC.Icon' Value='example.png'/>

 <Property Name='IPSC.DisplayName' Value='Example Addon Object'/>

 </Type>

Implementation Details

To create an Addon Object the Type Name must refer to a class, that implements
IAddonIpscObject (it can usually be derived from the helper class AddonIpscObject).

A Control Center object can have methods, properties and events, though this is entirely
optional. Historically, Control Center uses Visual Basic. This code requires your Control
Center object type to inherit Pacific.Core.BaseObject. To bridge between Control

Center and Addons, there is a class called AddonBaseObject.

The AddonBaseObject class maps between the serialization mechanisms (.NET binary

in the Control Center code and XML in Addons). The AddonBaseObject class also maps

the attributes that can be put on methods and properties. It essentially is a wrapper
around an addon that implements IAddonIpscObject.

Example 1:

public class Dashboard : AddonIpscObject<DashboardSettings> { }

(The AddonIpscObject helper class used here takes a type parameter: a POCO that

holds the settings of the addon, and which is assumed to be serializable by Data
Contracts.)

Define the Control Center object properties in the Addon Manifest as follows:

Example 2:

public class SiteReference : IAddonIpscObject { }

Notes:

• This object is called SiteReference. In Control Center user interface its called

Location Reference. In other words, in its IPSC.DisplayName in the manifest.

• It uses custom XML serialization to deal with a backward compatibility problem, so
it directly implements AddonIpscObject to be in complete control.

CONTROL CENTER ADDON FRAMEWORK GUIDE

12

• It also has a property:

[Export(Editable = true, Editor =

typeof(LocationTypeEditor))]

 public Guid TargetLocation

 {

 get { return _settings.TargetLocation; }

 set

 {

 _settings.TargetLocation = value;

 _settings.SiteHostName = string.Empty;

 }

 }

This makes TargetLocation appear in Control Center's property grid so a user can
directly edit it.

NOTE: Note the specifying of a custom Editor type.

Control Center Property Extenders
Extended properties provide the ability to add properties to Control Center objects.
A user supplies the value and the addon supplies the definition. They are a useful way of
associating new addon functionality to existing objects.

Supported Object Types

These types of Control Center Object can have extended properties.

• Asset Group
• Device
• Location
• Windows Client

Defining a Control Center Property Extender

In the Addon Manifest, the IPSC.AddonIpscObjectPropertyExtender property can be
defined. In the IPSC.AddonIpscObjectPropertyExtender property, value is ignored. It
simply indicates addon type. For example:
<Type Name='ExampleAssembly.ExamplePropertyExtenderClass'>

 <Property Name='IPSC.AddonIpscObjectAddonIpscObjectPropertyExtender'/>

 </Type>

Implementation Details

To create an Addon User Interface the Type Name must refer to a class that implements
IPropertyExtender.

The IPropertyExtender interface is trivial: it specifies the type name of the object it
applies to (the ObjectTypes class contains suitable string constants such as Location), and
a collection of ExtendedProperty objects that are the extra properties that should be
defined on that type.

CONTROL CENTER ADDON FRAMEWORK GUIDE

13

Control Center Addon User Interface
An Addon User Interface is a control to display when an addon object is displayed in a Tile
Layout. This allows visualization of the information stored in the object.

Manifest Properties

In the Addon Manifest, the IPSC.UserInterface property can be defined. Its value is the
FullName of the addon object that this is a user interface for.

For example,

<Type Name='ExampleAssembly.ExampleUserInterfaceClass'>

 <Property Name='IPSC.UserInterface'

Value='ExampleAssembly.ExampleObjectClass'/>

 </Type>

Implementation Details

To create an Addon User Interface, the Type Name must refer to a class that
implements IAddonIpscObjectUserInterface<T> where T is the main type of the addon
(on which this property is defined). The class must also be a WPF User Control, so the
interface will be implemented on the xaml.cs of the control.

User Environment Injection

The method on the interface BeginSession(TObject systemObject,
IUserInterfaceEnvironmentenv) injects the User Interface Environment into the Addon
User Interface to allow interaction with the Control Center client.

Control Center Client Action
Client Actions are executable actions on the Windows Client, that can be used from
commissioned buttons on the Main Menu Graphical User Interface (GUI) control.

Manifest Properties

In the Addon Manifest, these properties can be defined:

• IPSC.ClientAction - Value is ignored, simply indicates addon type.

• IPSC.DisplayName - Value is the name to display in the button configuration

screen to select the client action the button performs (does not currently support
localization).

For example,

<Type Name='ExampleAssembly.ExampleClientActionClass'>

 <Property Name='IPSC.ClientAction'/>

 <Property Name='IPSC.DisplayName' Value= 'Example Client Action'/>

 </Type>

Implementation Details

To create a Client Action the Type Name must refer to a class that implements
IClientAction.

CONTROL CENTER ADDON FRAMEWORK GUIDE

14

User Environment Injection

The method on the interface Execute(IUserInterfaceEnvironment

userInterfaceEnvironment) injects the User Interface Environment into the Client

Action to allow interaction with the Control Center client.

Control Center Client Managers
Client Managers run for the lifetime of the client process and allow long-running
management of information on the client machine.

Manifest Properties

In the Addon Manifest, the IPSC.ClientManager property can be defined. Its value is

ignored, it simply indicates addon type.

For example,

<Type Name='ExampleAssembly.ExampleClientManagerClass'>

 <Property Name='IPSC.ClientManager'/>

 </Type>

Implementation Details

To create a Client Manager the Type Name must refer to a class that implements
IClientManager.

User Environment Injection

The method on the interface Initialise(IUserInterfaceEnvironment

userInterfaceEnvironment, bool isNewClient) injects the Client Manager

into the Addon User Interface to allow interaction with the Control Center client.

Control Center Data Source
A DataSource provides data to Control Center. It executes inside a service (currently the
Alarm Types Service). Its purpose is to publish constantly updating tables of data.

Currently DataSources are used by Dashboard Widgets, though as a concept they are not
dependent on dashboards.

Manifest Properties

In the Addon Manifest, these properties can be defined:

• IPSC.DataSource - Value is ignored, simply indicates addon type.

• IPSC.DisplayName - Value is the name to display in the data source selection

dialog in Dashboards or other users of the data source (does not currently support
localization).

• (optional) IPSC.HideInDashboard - Value should be true to hide the data

source from being selected in the Dashboard data source selection dialog.

CONTROL CENTER ADDON FRAMEWORK GUIDE

15

For example,

<Type Name='ExampleAssembly.ExampleDataSourceClass'>

 <Property Name='IPSC.DataSource'/>

 <Property Name='IPSC.DisplayName' Value= 'Example Data Source'/>

 <Property Name='IPSC.HideInDashboard' Value= 'true'/>

 </Type>

Implementation Details

To create a Data Source, the Type Name must refer to a class that inherits from
DataSource<TSettings> where TSettings is a class of settings to configure the

Data Source.

Data Source Environment Injection

The method on the class Start(IDataSourceEnvironment environment) injects

the Data Source Environment into the Data Source to allows very specific Data-related
operations.

Control Center Data Source Designers
A Data Source Designer is the designe for a data source to set parameters controlling the
data returned.

Manifest Properties

In the Addon Manifest, the IPSC.DataSourceDesigner can be defined. Its value is the

FullName of the Data Source that this is a designer for.

For example,
<Type Name='ExampleAssembly.ExampleDataSourceDesignerClass'>

 <Property Name='IPSC.DataSourceDesigner'

 Value='ExampleAssembly.ExampleDataSourceClass'/>

 </Type>

Implementation Details

To create a Data Source Designer, the Type Name must refer to a class that implements
IDataSourceDesigner<TSettings>. The class must also be a WPF User Control, so

the interface will be implemented on the xaml.cs of the control. TSettings should be the

same type as the settings for the Data Source this Designer relates to.

Control Center GUI Plugin
GUI Plugins allow the creation of custom Graphical User Interface controls to be used in
the Control Center GUI designer. The Graphical User Interface controls are available as
custom controls in the GUI Editor Toolbox from the Plug-in Controls tab.

A Control Center plugin for the GUI designer is essentially a .Net user control with
attributes to identify that they should be loaded as plugins, as well as the functions and
properties that should be available to the end-user.

CONTROL CENTER ADDON FRAMEWORK GUIDE

16

Manifest Properties

In the Addon Manifest, the IPSC.GuiPlugin property can be defined. Its value is

ignored. It simply indicates addon type.

For example,

<Type Name='ExampleAssembly.ExampleGuiPluginClass'>

 <Property Name='IPSC.GuiPlugin'/>

 </Type>

Implementation Details

To create a GUI Plugin, the Type Name must refer to a class which has the ToolboxName
and ToolboxDescription attributes mentioned. The class must also be a WindowsForms
UserControl. The class can optionally inherit PluginControl – this provides drag-drop
functionality of Control Center objects.

The plugins can be used as custom controls in the GUI Editor Toolbox (Plug-in Controls
tab).

The original code for defining GUIs used its own internal base class for controls. So that
plugins could be isolated from this, a bridging system was created to wrap plugins in an
auto-generated class that inherits the internal base class. This results in the cached
compiled GUI and plugin DLLs that appear in ProgramData. This can make it difficult to
debug or extend further.

When writing a plugin:

• A Plugin class must have ToolboxName, ToolboxDescription attributes
implemented:
[ToolboxName('File Picker Control'),

 ToolboxDescription('A plugin File Picker control')]

 public partial class FilePickerControl : PluginControl

 {

 }

• A GUI Plugin must have a Reference to the DLL:

CompiledAssemblies\CNL.IPSecurityCenter.GraphicalUserInterf

ace.Plugin.Interface.dll

User Environment Injection

This is a facility available to plugins to communicate with the Windows Client
environment.

NOTE: It is not compatible or tested with GUIs running in Hosted mode.

The plugin must link to this assembly:

CNL.IPSecurityCenter.CoreAddonContracts.dll

In addition to the usual:

CNL.IPSecurityCenter.GraphicalUserInterface.Plugin.Interface.dll

CONTROL CENTER ADDON FRAMEWORK GUIDE

17

This then allows it to declare a magic property:

public IUserInterfaceEnvironment UserInterfaceEnvironment { get;

set; }

The Contol Center client looks for a property with that name and type, and if it finds one
then it sets the value to an object that implements IUserInterfaceEnvironment.

CAUTION: This injection happens after construction, so you cannot use the environment
object inside your constructor.

Control Center Registration Manager
A Registration manager is an addon instance that runs once after a user has successfully
logged in, and the client has loaded for the first time. The Registration Manager is for
registering and configuring the client environment as a one-time event.

Manifest Properties

In the Addon Manifest, the IPSC.RegistrationManager can be defined. Its value is

ignored, it simply indicates addon type.

For example,

<Type Name='ExampleAssembly.ExampleRegistrationManagerClass'>

 <Property Name='IPSC.RegistrationManager'/>

 </Type>

Implementation Details

To create a Registration Manager, the Type Name must refer to a class that implements
IRegistrationManager.

User Environment Injection

The method on the interface Initialise(IUserInterfaceEnvironment

userInterfaceEnvironment) injects the User Interface Environment into the

Registration Manager to allow interaction with the Control Center client.

Control Center User Interface Designer
A User Interface Designer is a control to display when an addon object is double clicked in
System Explorer. This is a control to display when an addon object is double clicked in
System Configuration. The control is used to set the contents of the object by its
serializable settings.

CONTROL CENTER ADDON FRAMEWORK GUIDE

18

Manifest Properties

In the Addon Manifest, the IPSC.Designer property an be defined. Its value is the

FullName of the Addon Object that this is a designer for.

For example,

<Type Name='ExampleAssembly.ExampleUserInterfaceDesignerClass'>

 <Property Name='IPSC.Designer'

Value='ExampleAssembly.ExampleObjectClass'/>

 </Type>

Implementation Details

To create a User Interface Designer, the Type Name must refer to a class that implements
IAddonIpscObjectDesigner<in TObject> which is the main type of the Addon

Object (on which this property is defined). The class must also be a WPF User Control, so
the interface will be implemented on the xaml.cs of the control.

Designer Environment Injection

The method on the interface BeginSession(TObject systemObject,

IDesignerEnvironment env) injects the Designer Environment into the User

Interface Designer to allow interaction with the Control Center with additional designer-
specific functionality.

Control Center Video Extensions
A video extension is an add-on that enhances the user interface of a video playback tile
control in the Windows client. It can do this by adding buttons to the toolbar, by replacing
the video (probably temporarily) with any other UI, and by adding icons and bookmarks to
the time bar.

Manifest Properties

In the Addon Manifest, the IPSC.VideoExtension property can be defined. Its value is

ignored. It simply indicates addon type.

For example,

<Type Name='ExampleAssembly.ExampleVideoExtensionClass'>

 <Property Name='IPSC.VideoExtension'/>

 </Type>

Implementation Details

To create a Video Extension the Type Name must refer to a class that implements
IVideoExtension.

Compared with the similar BeginSession methods in

IAddonIpscObjectUserInterface and IAddonIpscObjectDesigner, in this

case, it returns bool because it is quite normal/expected for an extension to refuse to
work with some cameras. For example, you could query the device for a specific interface
that it must implement.

CONTROL CENTER ADDON FRAMEWORK GUIDE

19

The environment is of type IVideoExtensionEnvironment. It

inherits IVideoControl so it allows the extension to control playback.

Video Extension Environment Injection

The method on the interface BeginSession(Reference videoDevice,
IVideoExtensionEnvironment environment, List<string> eventsList)

injects the Video Extension Environment into the Video Extension to allow video
interactions.

	About Control Center Addons
	Control Center Addon Package
	Control Center Addon Manifest
	Installing Addons
	Updating Addons

	Control Center Addon Framework Assemblies and Interfaces
	Accessing Addon Framework Interfaces
	Versioning

	Control Center Addon Component Types
	Control Center Objects
	Defining a Control Center Addon Object
	Manifest Properties
	Implementation Details

	Control Center Property Extenders
	Supported Object Types
	Defining a Control Center Property Extender
	Implementation Details

	Control Center Addon User Interface
	Manifest Properties
	Implementation Details
	User Environment Injection

	Control Center Client Action
	Manifest Properties
	Implementation Details
	User Environment Injection

	Control Center Client Managers
	Manifest Properties
	Implementation Details
	User Environment Injection

	Control Center Data Source
	Manifest Properties
	Implementation Details
	Data Source Environment Injection

	Control Center Data Source Designers
	Manifest Properties
	Implementation Details

	Control Center GUI Plugin
	Manifest Properties
	Implementation Details
	User Environment Injection

	Control Center Registration Manager
	Manifest Properties
	Implementation Details
	User Environment Injection

	Control Center User Interface Designer
	Manifest Properties
	Implementation Details
	Designer Environment Injection

	Control Center Video Extensions
	Manifest Properties
	Implementation Details
	Video Extension Environment Injection

